This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a functor from a terminal category. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag1f1o.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| diag1f1o.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | ||
| termcfuncval.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) | ||
| termcfuncval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| termcfuncval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| termcfuncval.x | ⊢ 𝑋 = ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) | ||
| termcfuncval.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| termcfuncval.i | ⊢ 𝐼 = ( Id ‘ 𝐷 ) | ||
| Assertion | termcfuncval | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐴 ∧ 𝐾 = 〈 { 〈 𝑌 , 𝑋 〉 } , { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 } 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1o.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 2 | diag1f1o.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | |
| 3 | termcfuncval.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) | |
| 4 | termcfuncval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 5 | termcfuncval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | termcfuncval.x | ⊢ 𝑋 = ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) | |
| 7 | termcfuncval.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 8 | termcfuncval.i | ⊢ 𝐼 = ( Id ‘ 𝐷 ) | |
| 9 | 3 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐾 ) ) |
| 10 | 4 1 9 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) : 𝐵 ⟶ 𝐴 ) |
| 11 | 10 5 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐴 ) |
| 12 | 6 11 | eqeltrid | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 13 | relfunc | ⊢ Rel ( 𝐷 Func 𝐶 ) | |
| 14 | 1st2nd | ⊢ ( ( Rel ( 𝐷 Func 𝐶 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) | |
| 15 | 13 3 14 | sylancr | ⊢ ( 𝜑 → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
| 16 | 2 4 5 | termcbas2 | ⊢ ( 𝜑 → 𝐵 = { 𝑌 } ) |
| 17 | 16 | feq2d | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) : 𝐵 ⟶ 𝐴 ↔ ( 1st ‘ 𝐾 ) : { 𝑌 } ⟶ 𝐴 ) ) |
| 18 | 10 17 | mpbid | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) : { 𝑌 } ⟶ 𝐴 ) |
| 19 | fsn2g | ⊢ ( 𝑌 ∈ 𝐵 → ( ( 1st ‘ 𝐾 ) : { 𝑌 } ⟶ 𝐴 ↔ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐴 ∧ ( 1st ‘ 𝐾 ) = { 〈 𝑌 , ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) 〉 } ) ) ) | |
| 20 | 5 19 | syl | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) : { 𝑌 } ⟶ 𝐴 ↔ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐴 ∧ ( 1st ‘ 𝐾 ) = { 〈 𝑌 , ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) 〉 } ) ) ) |
| 21 | 18 20 | mpbid | ⊢ ( 𝜑 → ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐴 ∧ ( 1st ‘ 𝐾 ) = { 〈 𝑌 , ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) 〉 } ) ) |
| 22 | 21 | simprd | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) = { 〈 𝑌 , ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) 〉 } ) |
| 23 | 6 | opeq2i | ⊢ 〈 𝑌 , 𝑋 〉 = 〈 𝑌 , ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) 〉 |
| 24 | 23 | sneqi | ⊢ { 〈 𝑌 , 𝑋 〉 } = { 〈 𝑌 , ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) 〉 } |
| 25 | 22 24 | eqtr4di | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) = { 〈 𝑌 , 𝑋 〉 } ) |
| 26 | 4 9 | funcfn2 | ⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) Fn ( 𝐵 × 𝐵 ) ) |
| 27 | 16 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( { 𝑌 } × { 𝑌 } ) ) |
| 28 | xpsng | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 𝑌 } × { 𝑌 } ) = { 〈 𝑌 , 𝑌 〉 } ) | |
| 29 | 5 5 28 | syl2anc | ⊢ ( 𝜑 → ( { 𝑌 } × { 𝑌 } ) = { 〈 𝑌 , 𝑌 〉 } ) |
| 30 | 27 29 | eqtrd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = { 〈 𝑌 , 𝑌 〉 } ) |
| 31 | 30 | fneq2d | ⊢ ( 𝜑 → ( ( 2nd ‘ 𝐾 ) Fn ( 𝐵 × 𝐵 ) ↔ ( 2nd ‘ 𝐾 ) Fn { 〈 𝑌 , 𝑌 〉 } ) ) |
| 32 | 26 31 | mpbid | ⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) Fn { 〈 𝑌 , 𝑌 〉 } ) |
| 33 | opex | ⊢ 〈 𝑌 , 𝑌 〉 ∈ V | |
| 34 | 33 | fnsnb | ⊢ ( ( 2nd ‘ 𝐾 ) Fn { 〈 𝑌 , 𝑌 〉 } ↔ ( 2nd ‘ 𝐾 ) = { 〈 〈 𝑌 , 𝑌 〉 , ( ( 2nd ‘ 𝐾 ) ‘ 〈 𝑌 , 𝑌 〉 ) 〉 } ) |
| 35 | 32 34 | sylib | ⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = { 〈 〈 𝑌 , 𝑌 〉 , ( ( 2nd ‘ 𝐾 ) ‘ 〈 𝑌 , 𝑌 〉 ) 〉 } ) |
| 36 | df-ov | ⊢ ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) = ( ( 2nd ‘ 𝐾 ) ‘ 〈 𝑌 , 𝑌 〉 ) | |
| 37 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 38 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 39 | 4 37 38 9 5 5 | funcf2 | ⊢ ( 𝜑 → ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) : ( 𝑌 ( Hom ‘ 𝐷 ) 𝑌 ) ⟶ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 40 | 2 4 5 5 37 8 | termchom | ⊢ ( 𝜑 → ( 𝑌 ( Hom ‘ 𝐷 ) 𝑌 ) = { ( 𝐼 ‘ 𝑌 ) } ) |
| 41 | 40 | eqcomd | ⊢ ( 𝜑 → { ( 𝐼 ‘ 𝑌 ) } = ( 𝑌 ( Hom ‘ 𝐷 ) 𝑌 ) ) |
| 42 | 6 6 | oveq12i | ⊢ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) = ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ) |
| 43 | 42 | a1i | ⊢ ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) = ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 44 | 41 43 | feq23d | ⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) : { ( 𝐼 ‘ 𝑌 ) } ⟶ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) : ( 𝑌 ( Hom ‘ 𝐷 ) 𝑌 ) ⟶ ( ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
| 45 | 39 44 | mpbird | ⊢ ( 𝜑 → ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) : { ( 𝐼 ‘ 𝑌 ) } ⟶ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 46 | fvex | ⊢ ( 𝐼 ‘ 𝑌 ) ∈ V | |
| 47 | 46 | fsn2 | ⊢ ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) : { ( 𝐼 ‘ 𝑌 ) } ⟶ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ ( ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) = { 〈 ( 𝐼 ‘ 𝑌 ) , ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) 〉 } ) ) |
| 48 | 45 47 | sylib | ⊢ ( 𝜑 → ( ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) = { 〈 ( 𝐼 ‘ 𝑌 ) , ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) 〉 } ) ) |
| 49 | 48 | simprd | ⊢ ( 𝜑 → ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) = { 〈 ( 𝐼 ‘ 𝑌 ) , ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) 〉 } ) |
| 50 | 4 8 7 9 5 | funcid | ⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) = ( 1 ‘ ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 51 | 6 | fveq2i | ⊢ ( 1 ‘ 𝑋 ) = ( 1 ‘ ( ( 1st ‘ 𝐾 ) ‘ 𝑌 ) ) |
| 52 | 50 51 | eqtr4di | ⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) = ( 1 ‘ 𝑋 ) ) |
| 53 | 52 | opeq2d | ⊢ ( 𝜑 → 〈 ( 𝐼 ‘ 𝑌 ) , ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) 〉 = 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 ) |
| 54 | 53 | sneqd | ⊢ ( 𝜑 → { 〈 ( 𝐼 ‘ 𝑌 ) , ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) ‘ ( 𝐼 ‘ 𝑌 ) ) 〉 } = { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } ) |
| 55 | 49 54 | eqtrd | ⊢ ( 𝜑 → ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑌 ) = { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } ) |
| 56 | 36 55 | eqtr3id | ⊢ ( 𝜑 → ( ( 2nd ‘ 𝐾 ) ‘ 〈 𝑌 , 𝑌 〉 ) = { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } ) |
| 57 | 56 | opeq2d | ⊢ ( 𝜑 → 〈 〈 𝑌 , 𝑌 〉 , ( ( 2nd ‘ 𝐾 ) ‘ 〈 𝑌 , 𝑌 〉 ) 〉 = 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 ) |
| 58 | 57 | sneqd | ⊢ ( 𝜑 → { 〈 〈 𝑌 , 𝑌 〉 , ( ( 2nd ‘ 𝐾 ) ‘ 〈 𝑌 , 𝑌 〉 ) 〉 } = { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 } ) |
| 59 | 35 58 | eqtrd | ⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 } ) |
| 60 | 25 59 | opeq12d | ⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 = 〈 { 〈 𝑌 , 𝑋 〉 } , { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 } 〉 ) |
| 61 | 15 60 | eqtrd | ⊢ ( 𝜑 → 𝐾 = 〈 { 〈 𝑌 , 𝑋 〉 } , { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 } 〉 ) |
| 62 | 12 61 | jca | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐴 ∧ 𝐾 = 〈 { 〈 𝑌 , 𝑋 〉 } , { 〈 〈 𝑌 , 𝑌 〉 , { 〈 ( 𝐼 ‘ 𝑌 ) , ( 1 ‘ 𝑋 ) 〉 } 〉 } 〉 ) ) |