This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant functor of X . (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| diag1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| diag1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| diag1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| diag1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| diag1.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | ||
| diag1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| diag1.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| diag1.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| Assertion | diag1a | ⊢ ( 𝜑 → 𝐾 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 𝐽 𝑧 ) × { ( 1 ‘ 𝑋 ) } ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 2 | diag1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 3 | diag1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | diag1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 5 | diag1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 6 | diag1.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | |
| 7 | diag1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 8 | diag1.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 9 | diag1.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | diag1 | ⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) 〉 ) |
| 11 | fconstmpt | ⊢ ( 𝐵 × { 𝑋 } ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) | |
| 12 | fconstmpt | ⊢ ( ( 𝑦 𝐽 𝑧 ) × { ( 1 ‘ 𝑋 ) } ) = ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) | |
| 13 | 12 | a1i | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑦 𝐽 𝑧 ) × { ( 1 ‘ 𝑋 ) } ) = ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) |
| 14 | 13 | mpoeq3ia | ⊢ ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 𝐽 𝑧 ) × { ( 1 ‘ 𝑋 ) } ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) |
| 15 | 11 14 | opeq12i | ⊢ 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 𝐽 𝑧 ) × { ( 1 ‘ 𝑋 ) } ) ) 〉 = 〈 ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( 1 ‘ 𝑋 ) ) ) 〉 |
| 16 | 10 15 | eqtr4di | ⊢ ( 𝜑 → 𝐾 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( ( 𝑦 𝐽 𝑧 ) × { ( 1 ‘ 𝑋 ) } ) ) 〉 ) |