This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The object part of the diagonal functor is a bijection if D is terminal. So any functor from a terminal category is one-to-one correspondent to an object of the target base. (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag1f1o.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| diag1f1o.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | ||
| diag1f1o.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| diag1f1o.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | ||
| Assertion | diag1f1o | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 –1-1-onto→ ( 𝐷 Func 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1o.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 2 | diag1f1o.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | |
| 3 | diag1f1o.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | diag1f1o.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 5 | 2 | termccd | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 6 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 7 | 6 | istermc2 | ⊢ ( 𝐷 ∈ TermCat ↔ ( 𝐷 ∈ ThinCat ∧ ∃! 𝑦 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) |
| 8 | 2 7 | sylib | ⊢ ( 𝜑 → ( 𝐷 ∈ ThinCat ∧ ∃! 𝑦 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) |
| 9 | 8 | simprd | ⊢ ( 𝜑 → ∃! 𝑦 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 10 | euex | ⊢ ( ∃! 𝑦 𝑦 ∈ ( Base ‘ 𝐷 ) → ∃ 𝑦 𝑦 ∈ ( Base ‘ 𝐷 ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → ∃ 𝑦 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 12 | n0 | ⊢ ( ( Base ‘ 𝐷 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( Base ‘ 𝐷 ) ) | |
| 13 | 11 12 | sylibr | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) ≠ ∅ ) |
| 14 | 4 3 5 1 6 13 | diag1f1 | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 –1-1→ ( 𝐷 Func 𝐶 ) ) |
| 15 | f1f | ⊢ ( ( 1st ‘ 𝐿 ) : 𝐴 –1-1→ ( 𝐷 Func 𝐶 ) → ( 1st ‘ 𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) ) |
| 17 | 2 6 | termcbas | ⊢ ( 𝜑 → ∃ 𝑦 ( Base ‘ 𝐷 ) = { 𝑦 } ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 Func 𝐶 ) ) → ∃ 𝑦 ( Base ‘ 𝐷 ) = { 𝑦 } ) |
| 19 | fveq2 | ⊢ ( 𝑥 = ( ( 1st ‘ 𝑘 ) ‘ 𝑦 ) → ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ ( ( 1st ‘ 𝑘 ) ‘ 𝑦 ) ) ) | |
| 20 | 19 | eqeq2d | ⊢ ( 𝑥 = ( ( 1st ‘ 𝑘 ) ‘ 𝑦 ) → ( 𝑘 = ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ↔ 𝑘 = ( ( 1st ‘ 𝐿 ) ‘ ( ( 1st ‘ 𝑘 ) ‘ 𝑦 ) ) ) ) |
| 21 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 Func 𝐶 ) ) ∧ ( Base ‘ 𝐷 ) = { 𝑦 } ) → 𝐷 ∈ TermCat ) |
| 22 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 Func 𝐶 ) ) ∧ ( Base ‘ 𝐷 ) = { 𝑦 } ) → 𝑘 ∈ ( 𝐷 Func 𝐶 ) ) | |
| 23 | vsnid | ⊢ 𝑦 ∈ { 𝑦 } | |
| 24 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 Func 𝐶 ) ) ∧ ( Base ‘ 𝐷 ) = { 𝑦 } ) → ( Base ‘ 𝐷 ) = { 𝑦 } ) | |
| 25 | 23 24 | eleqtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 Func 𝐶 ) ) ∧ ( Base ‘ 𝐷 ) = { 𝑦 } ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 26 | eqid | ⊢ ( ( 1st ‘ 𝑘 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝑘 ) ‘ 𝑦 ) | |
| 27 | 1 21 22 6 25 26 4 | diag1f1olem | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 Func 𝐶 ) ) ∧ ( Base ‘ 𝐷 ) = { 𝑦 } ) → ( ( ( 1st ‘ 𝑘 ) ‘ 𝑦 ) ∈ 𝐴 ∧ 𝑘 = ( ( 1st ‘ 𝐿 ) ‘ ( ( 1st ‘ 𝑘 ) ‘ 𝑦 ) ) ) ) |
| 28 | 27 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 Func 𝐶 ) ) ∧ ( Base ‘ 𝐷 ) = { 𝑦 } ) → ( ( 1st ‘ 𝑘 ) ‘ 𝑦 ) ∈ 𝐴 ) |
| 29 | 27 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 Func 𝐶 ) ) ∧ ( Base ‘ 𝐷 ) = { 𝑦 } ) → 𝑘 = ( ( 1st ‘ 𝐿 ) ‘ ( ( 1st ‘ 𝑘 ) ‘ 𝑦 ) ) ) |
| 30 | 20 28 29 | rspcedvdw | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 Func 𝐶 ) ) ∧ ( Base ‘ 𝐷 ) = { 𝑦 } ) → ∃ 𝑥 ∈ 𝐴 𝑘 = ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) |
| 31 | 18 30 | exlimddv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 Func 𝐶 ) ) → ∃ 𝑥 ∈ 𝐴 𝑘 = ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) |
| 32 | 31 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝐷 Func 𝐶 ) ∃ 𝑥 ∈ 𝐴 𝑘 = ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) |
| 33 | dffo3 | ⊢ ( ( 1st ‘ 𝐿 ) : 𝐴 –onto→ ( 𝐷 Func 𝐶 ) ↔ ( ( 1st ‘ 𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) ∧ ∀ 𝑘 ∈ ( 𝐷 Func 𝐶 ) ∃ 𝑥 ∈ 𝐴 𝑘 = ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) | |
| 34 | 16 32 33 | sylanbrc | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 –onto→ ( 𝐷 Func 𝐶 ) ) |
| 35 | df-f1o | ⊢ ( ( 1st ‘ 𝐿 ) : 𝐴 –1-1-onto→ ( 𝐷 Func 𝐶 ) ↔ ( ( 1st ‘ 𝐿 ) : 𝐴 –1-1→ ( 𝐷 Func 𝐶 ) ∧ ( 1st ‘ 𝐿 ) : 𝐴 –onto→ ( 𝐷 Func 𝐶 ) ) ) | |
| 36 | 14 34 35 | sylanbrc | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 –1-1-onto→ ( 𝐷 Func 𝐶 ) ) |