This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: To any functor from a terminal category can an object in the target base be assigned. (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag1f1o.a | |- A = ( Base ` C ) |
|
| diag1f1o.d | |- ( ph -> D e. TermCat ) |
||
| termcfuncval.k | |- ( ph -> K e. ( D Func C ) ) |
||
| termcfuncval.b | |- B = ( Base ` D ) |
||
| termcfuncval.y | |- ( ph -> Y e. B ) |
||
| termcfuncval.x | |- X = ( ( 1st ` K ) ` Y ) |
||
| diag1f1olem.l | |- L = ( C DiagFunc D ) |
||
| Assertion | diag1f1olem | |- ( ph -> ( X e. A /\ K = ( ( 1st ` L ) ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1o.a | |- A = ( Base ` C ) |
|
| 2 | diag1f1o.d | |- ( ph -> D e. TermCat ) |
|
| 3 | termcfuncval.k | |- ( ph -> K e. ( D Func C ) ) |
|
| 4 | termcfuncval.b | |- B = ( Base ` D ) |
|
| 5 | termcfuncval.y | |- ( ph -> Y e. B ) |
|
| 6 | termcfuncval.x | |- X = ( ( 1st ` K ) ` Y ) |
|
| 7 | diag1f1olem.l | |- L = ( C DiagFunc D ) |
|
| 8 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 9 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 10 | 1 2 3 4 5 6 8 9 | termcfuncval | |- ( ph -> ( X e. A /\ K = <. { <. Y , X >. } , { <. <. Y , Y >. , { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } >. } >. ) ) |
| 11 | 10 | simpld | |- ( ph -> X e. A ) |
| 12 | 2 4 5 | termcbas2 | |- ( ph -> B = { Y } ) |
| 13 | 12 | xpeq1d | |- ( ph -> ( B X. { X } ) = ( { Y } X. { X } ) ) |
| 14 | xpsng | |- ( ( Y e. B /\ X e. A ) -> ( { Y } X. { X } ) = { <. Y , X >. } ) |
|
| 15 | 5 11 14 | syl2anc | |- ( ph -> ( { Y } X. { X } ) = { <. Y , X >. } ) |
| 16 | 13 15 | eqtrd | |- ( ph -> ( B X. { X } ) = { <. Y , X >. } ) |
| 17 | 12 | adantr | |- ( ( ph /\ y e. B ) -> B = { Y } ) |
| 18 | 2 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> D e. TermCat ) |
| 19 | simprl | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> y e. B ) |
|
| 20 | simprr | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> z e. B ) |
|
| 21 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 22 | 5 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> Y e. B ) |
| 23 | 18 4 19 20 21 9 22 | termchom2 | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y ( Hom ` D ) z ) = { ( ( Id ` D ) ` Y ) } ) |
| 24 | 23 | xpeq1d | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( y ( Hom ` D ) z ) X. { ( ( Id ` C ) ` X ) } ) = ( { ( ( Id ` D ) ` Y ) } X. { ( ( Id ` C ) ` X ) } ) ) |
| 25 | fvex | |- ( ( Id ` D ) ` Y ) e. _V |
|
| 26 | fvex | |- ( ( Id ` C ) ` X ) e. _V |
|
| 27 | 25 26 | xpsn | |- ( { ( ( Id ` D ) ` Y ) } X. { ( ( Id ` C ) ` X ) } ) = { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } |
| 28 | 24 27 | eqtrdi | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( ( y ( Hom ` D ) z ) X. { ( ( Id ` C ) ` X ) } ) = { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) |
| 29 | 12 17 28 | mpoeq123dva | |- ( ph -> ( y e. B , z e. B |-> ( ( y ( Hom ` D ) z ) X. { ( ( Id ` C ) ` X ) } ) ) = ( y e. { Y } , z e. { Y } |-> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) ) |
| 30 | snex | |- { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } e. _V |
|
| 31 | 30 | a1i | |- ( ph -> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } e. _V ) |
| 32 | eqid | |- ( y e. { Y } , z e. { Y } |-> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) = ( y e. { Y } , z e. { Y } |-> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) |
|
| 33 | eqidd | |- ( y = Y -> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } = { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) |
|
| 34 | eqidd | |- ( z = Y -> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } = { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) |
|
| 35 | 32 33 34 | mposn | |- ( ( Y e. B /\ Y e. B /\ { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } e. _V ) -> ( y e. { Y } , z e. { Y } |-> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) = { <. <. Y , Y >. , { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } >. } ) |
| 36 | 5 5 31 35 | syl3anc | |- ( ph -> ( y e. { Y } , z e. { Y } |-> { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } ) = { <. <. Y , Y >. , { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } >. } ) |
| 37 | 29 36 | eqtrd | |- ( ph -> ( y e. B , z e. B |-> ( ( y ( Hom ` D ) z ) X. { ( ( Id ` C ) ` X ) } ) ) = { <. <. Y , Y >. , { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } >. } ) |
| 38 | 16 37 | opeq12d | |- ( ph -> <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` D ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. = <. { <. Y , X >. } , { <. <. Y , Y >. , { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } >. } >. ) |
| 39 | 3 | func1st2nd | |- ( ph -> ( 1st ` K ) ( D Func C ) ( 2nd ` K ) ) |
| 40 | 39 | funcrcl3 | |- ( ph -> C e. Cat ) |
| 41 | 2 | termccd | |- ( ph -> D e. Cat ) |
| 42 | eqid | |- ( ( 1st ` L ) ` X ) = ( ( 1st ` L ) ` X ) |
|
| 43 | 7 40 41 1 11 42 4 21 8 | diag1a | |- ( ph -> ( ( 1st ` L ) ` X ) = <. ( B X. { X } ) , ( y e. B , z e. B |-> ( ( y ( Hom ` D ) z ) X. { ( ( Id ` C ) ` X ) } ) ) >. ) |
| 44 | 10 | simprd | |- ( ph -> K = <. { <. Y , X >. } , { <. <. Y , Y >. , { <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. } >. } >. ) |
| 45 | 38 43 44 | 3eqtr4rd | |- ( ph -> K = ( ( 1st ` L ) ` X ) ) |
| 46 | 11 45 | jca | |- ( ph -> ( X e. A /\ K = ( ( 1st ` L ) ` X ) ) ) |