This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: When R is a set and a relation, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfttrcl2 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → t++ 𝑅 = ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintab | ⊢ ( t++ 𝑅 ⊆ ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ↔ ∀ 𝑧 ( ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) → t++ 𝑅 ⊆ 𝑧 ) ) | |
| 2 | ttrclss | ⊢ ( ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) → t++ 𝑅 ⊆ 𝑧 ) | |
| 3 | 1 2 | mpgbir | ⊢ t++ 𝑅 ⊆ ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
| 4 | 3 | a1i | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → t++ 𝑅 ⊆ ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
| 5 | rabab | ⊢ { 𝑧 ∈ V ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } | |
| 6 | 5 | inteqi | ⊢ ∩ { 𝑧 ∈ V ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
| 7 | ttrclexg | ⊢ ( 𝑅 ∈ 𝑉 → t++ 𝑅 ∈ V ) | |
| 8 | ssttrcl | ⊢ ( Rel 𝑅 → 𝑅 ⊆ t++ 𝑅 ) | |
| 9 | ttrcltr | ⊢ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 | |
| 10 | 8 9 | jctir | ⊢ ( Rel 𝑅 → ( 𝑅 ⊆ t++ 𝑅 ∧ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 ) ) |
| 11 | sseq2 | ⊢ ( 𝑧 = t++ 𝑅 → ( 𝑅 ⊆ 𝑧 ↔ 𝑅 ⊆ t++ 𝑅 ) ) | |
| 12 | coeq1 | ⊢ ( 𝑧 = t++ 𝑅 → ( 𝑧 ∘ 𝑧 ) = ( t++ 𝑅 ∘ 𝑧 ) ) | |
| 13 | coeq2 | ⊢ ( 𝑧 = t++ 𝑅 → ( t++ 𝑅 ∘ 𝑧 ) = ( t++ 𝑅 ∘ t++ 𝑅 ) ) | |
| 14 | 12 13 | eqtrd | ⊢ ( 𝑧 = t++ 𝑅 → ( 𝑧 ∘ 𝑧 ) = ( t++ 𝑅 ∘ t++ 𝑅 ) ) |
| 15 | id | ⊢ ( 𝑧 = t++ 𝑅 → 𝑧 = t++ 𝑅 ) | |
| 16 | 14 15 | sseq12d | ⊢ ( 𝑧 = t++ 𝑅 → ( ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ↔ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 ) ) |
| 17 | 11 16 | anbi12d | ⊢ ( 𝑧 = t++ 𝑅 → ( ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( 𝑅 ⊆ t++ 𝑅 ∧ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 ) ) ) |
| 18 | 17 | intminss | ⊢ ( ( t++ 𝑅 ∈ V ∧ ( 𝑅 ⊆ t++ 𝑅 ∧ ( t++ 𝑅 ∘ t++ 𝑅 ) ⊆ t++ 𝑅 ) ) → ∩ { 𝑧 ∈ V ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ⊆ t++ 𝑅 ) |
| 19 | 7 10 18 | syl2an | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → ∩ { 𝑧 ∈ V ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ⊆ t++ 𝑅 ) |
| 20 | 6 19 | eqsstrrid | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ⊆ t++ 𝑅 ) |
| 21 | 4 20 | eqssd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ Rel 𝑅 ) → t++ 𝑅 = ∩ { 𝑧 ∣ ( 𝑅 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |