This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If R is a set, then so is t++ R . (Contributed by Scott Fenton, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ttrclexg | ⊢ ( 𝑅 ∈ 𝑉 → t++ 𝑅 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg | ⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) | |
| 2 | rnexg | ⊢ ( 𝑅 ∈ 𝑉 → ran 𝑅 ∈ V ) | |
| 3 | 1 2 | xpexd | ⊢ ( 𝑅 ∈ 𝑉 → ( dom 𝑅 × ran 𝑅 ) ∈ V ) |
| 4 | relttrcl | ⊢ Rel t++ 𝑅 | |
| 5 | relssdmrn | ⊢ ( Rel t++ 𝑅 → t++ 𝑅 ⊆ ( dom t++ 𝑅 × ran t++ 𝑅 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ t++ 𝑅 ⊆ ( dom t++ 𝑅 × ran t++ 𝑅 ) |
| 7 | dmttrcl | ⊢ dom t++ 𝑅 = dom 𝑅 | |
| 8 | rnttrcl | ⊢ ran t++ 𝑅 = ran 𝑅 | |
| 9 | 7 8 | xpeq12i | ⊢ ( dom t++ 𝑅 × ran t++ 𝑅 ) = ( dom 𝑅 × ran 𝑅 ) |
| 10 | 6 9 | sseqtri | ⊢ t++ 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) |
| 11 | 10 | a1i | ⊢ ( 𝑅 ∈ 𝑉 → t++ 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) |
| 12 | 3 11 | ssexd | ⊢ ( 𝑅 ∈ 𝑉 → t++ 𝑅 ∈ V ) |