This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: When R is a set and a relation, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfttrcl2 | |- ( ( R e. V /\ Rel R ) -> t++ R = |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintab | |- ( t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } <-> A. z ( ( R C_ z /\ ( z o. z ) C_ z ) -> t++ R C_ z ) ) |
|
| 2 | ttrclss | |- ( ( R C_ z /\ ( z o. z ) C_ z ) -> t++ R C_ z ) |
|
| 3 | 1 2 | mpgbir | |- t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } |
| 4 | 3 | a1i | |- ( ( R e. V /\ Rel R ) -> t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } ) |
| 5 | rabab | |- { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } = { z | ( R C_ z /\ ( z o. z ) C_ z ) } |
|
| 6 | 5 | inteqi | |- |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } = |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } |
| 7 | ttrclexg | |- ( R e. V -> t++ R e. _V ) |
|
| 8 | ssttrcl | |- ( Rel R -> R C_ t++ R ) |
|
| 9 | ttrcltr | |- ( t++ R o. t++ R ) C_ t++ R |
|
| 10 | 8 9 | jctir | |- ( Rel R -> ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) |
| 11 | sseq2 | |- ( z = t++ R -> ( R C_ z <-> R C_ t++ R ) ) |
|
| 12 | coeq1 | |- ( z = t++ R -> ( z o. z ) = ( t++ R o. z ) ) |
|
| 13 | coeq2 | |- ( z = t++ R -> ( t++ R o. z ) = ( t++ R o. t++ R ) ) |
|
| 14 | 12 13 | eqtrd | |- ( z = t++ R -> ( z o. z ) = ( t++ R o. t++ R ) ) |
| 15 | id | |- ( z = t++ R -> z = t++ R ) |
|
| 16 | 14 15 | sseq12d | |- ( z = t++ R -> ( ( z o. z ) C_ z <-> ( t++ R o. t++ R ) C_ t++ R ) ) |
| 17 | 11 16 | anbi12d | |- ( z = t++ R -> ( ( R C_ z /\ ( z o. z ) C_ z ) <-> ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) ) |
| 18 | 17 | intminss | |- ( ( t++ R e. _V /\ ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) -> |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) |
| 19 | 7 10 18 | syl2an | |- ( ( R e. V /\ Rel R ) -> |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) |
| 20 | 6 19 | eqsstrrid | |- ( ( R e. V /\ Rel R ) -> |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) |
| 21 | 4 20 | eqssd | |- ( ( R e. V /\ Rel R ) -> t++ R = |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } ) |