This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the gcd operator, see definition in ApostolNT p. 15. (Contributed by AV, 8-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfgcd2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐷 = ( 𝑀 gcd 𝑁 ) ↔ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) | |
| 2 | 1 | nn0ge0d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 0 ≤ ( 𝑀 gcd 𝑁 ) ) |
| 3 | gcddvds | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 4 | 3anass | ⊢ ( ( 𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ↔ ( 𝑒 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ) | |
| 5 | 4 | biancomi | ⊢ ( ( 𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑒 ∈ ℤ ) ) |
| 6 | dvdsgcd | ⊢ ( ( 𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) | |
| 7 | 5 6 | sylbir | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑒 ∈ ℤ ) → ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
| 8 | 7 | ralrimiva | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
| 9 | 2 3 8 | 3jca | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ≤ ( 𝑀 gcd 𝑁 ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐷 = ( 𝑀 gcd 𝑁 ) ) → ( 0 ≤ ( 𝑀 gcd 𝑁 ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 11 | breq2 | ⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( 0 ≤ 𝐷 ↔ 0 ≤ ( 𝑀 gcd 𝑁 ) ) ) | |
| 12 | breq1 | ⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( 𝐷 ∥ 𝑀 ↔ ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) ) | |
| 13 | breq1 | ⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( 𝐷 ∥ 𝑁 ↔ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 14 | 12 13 | anbi12d | ⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ↔ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) ) |
| 15 | breq2 | ⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( 𝑒 ∥ 𝐷 ↔ 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) | |
| 16 | 15 | imbi2d | ⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 17 | 16 | ralbidv | ⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 18 | 11 14 17 | 3anbi123d | ⊢ ( 𝐷 = ( 𝑀 gcd 𝑁 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ↔ ( 0 ≤ ( 𝑀 gcd 𝑁 ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐷 = ( 𝑀 gcd 𝑁 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ↔ ( 0 ≤ ( 𝑀 gcd 𝑁 ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ ( 𝑀 gcd 𝑁 ) ) ) ) ) |
| 20 | 10 19 | mpbird | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐷 = ( 𝑀 gcd 𝑁 ) ) → ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) |
| 21 | gcdval | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) | |
| 22 | 21 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → ( 𝑀 gcd 𝑁 ) = if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) |
| 23 | iftrue | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 0 ) | |
| 24 | 23 | adantr | ⊢ ( ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 0 ) |
| 25 | breq2 | ⊢ ( 𝑀 = 0 → ( 𝐷 ∥ 𝑀 ↔ 𝐷 ∥ 0 ) ) | |
| 26 | breq2 | ⊢ ( 𝑁 = 0 → ( 𝐷 ∥ 𝑁 ↔ 𝐷 ∥ 0 ) ) | |
| 27 | 25 26 | bi2anan9 | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ↔ ( 𝐷 ∥ 0 ∧ 𝐷 ∥ 0 ) ) ) |
| 28 | breq2 | ⊢ ( 𝑀 = 0 → ( 𝑒 ∥ 𝑀 ↔ 𝑒 ∥ 0 ) ) | |
| 29 | breq2 | ⊢ ( 𝑁 = 0 → ( 𝑒 ∥ 𝑁 ↔ 𝑒 ∥ 0 ) ) | |
| 30 | 28 29 | bi2anan9 | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) ↔ ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) ) ) |
| 31 | 30 | imbi1d | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ) ) |
| 32 | 31 | ralbidv | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ) ) |
| 33 | 27 32 | 3anbi23d | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ↔ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 0 ∧ 𝐷 ∥ 0 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ) ) ) |
| 34 | dvdszrcl | ⊢ ( 𝐷 ∥ 0 → ( 𝐷 ∈ ℤ ∧ 0 ∈ ℤ ) ) | |
| 35 | dvds0 | ⊢ ( 𝑒 ∈ ℤ → 𝑒 ∥ 0 ) | |
| 36 | 35 35 | jca | ⊢ ( 𝑒 ∈ ℤ → ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) ∧ 𝑒 ∈ ℤ ) → ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) ) |
| 38 | pm5.5 | ⊢ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → ( ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ↔ 𝑒 ∥ 𝐷 ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) ∧ 𝑒 ∈ ℤ ) → ( ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ↔ 𝑒 ∥ 𝐷 ) ) |
| 40 | 39 | ralbidva | ⊢ ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ↔ ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 ) ) |
| 41 | 0z | ⊢ 0 ∈ ℤ | |
| 42 | breq1 | ⊢ ( 𝑒 = 0 → ( 𝑒 ∥ 𝐷 ↔ 0 ∥ 𝐷 ) ) | |
| 43 | 42 | rspcv | ⊢ ( 0 ∈ ℤ → ( ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 ∥ 𝐷 ) ) |
| 44 | 41 43 | ax-mp | ⊢ ( ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 ∥ 𝐷 ) |
| 45 | 0dvds | ⊢ ( 𝐷 ∈ ℤ → ( 0 ∥ 𝐷 ↔ 𝐷 = 0 ) ) | |
| 46 | 45 | biimpd | ⊢ ( 𝐷 ∈ ℤ → ( 0 ∥ 𝐷 → 𝐷 = 0 ) ) |
| 47 | eqcom | ⊢ ( 0 = 𝐷 ↔ 𝐷 = 0 ) | |
| 48 | 46 47 | imbitrrdi | ⊢ ( 𝐷 ∈ ℤ → ( 0 ∥ 𝐷 → 0 = 𝐷 ) ) |
| 49 | 44 48 | syl5 | ⊢ ( 𝐷 ∈ ℤ → ( ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 = 𝐷 ) ) |
| 50 | 49 | adantr | ⊢ ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) → ( ∀ 𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 = 𝐷 ) ) |
| 51 | 40 50 | sylbid | ⊢ ( ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) |
| 52 | 51 | ex | ⊢ ( 𝐷 ∈ ℤ → ( 0 ≤ 𝐷 → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) ) |
| 53 | 52 | adantr | ⊢ ( ( 𝐷 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 0 ≤ 𝐷 → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) ) |
| 54 | 34 53 | syl | ⊢ ( 𝐷 ∥ 0 → ( 0 ≤ 𝐷 → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) ) |
| 55 | 54 | adantr | ⊢ ( ( 𝐷 ∥ 0 ∧ 𝐷 ∥ 0 ) → ( 0 ≤ 𝐷 → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) → 0 = 𝐷 ) ) ) |
| 56 | 55 | 3imp21 | ⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 0 ∧ 𝐷 ∥ 0 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 0 ∧ 𝑒 ∥ 0 ) → 𝑒 ∥ 𝐷 ) ) → 0 = 𝐷 ) |
| 57 | 33 56 | biimtrdi | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → 0 = 𝐷 ) ) |
| 58 | 57 | adantld | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → 0 = 𝐷 ) ) |
| 59 | 58 | imp | ⊢ ( ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → 0 = 𝐷 ) |
| 60 | 24 59 | eqtrd | ⊢ ( ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 𝐷 ) |
| 61 | iffalse | ⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) | |
| 62 | 61 | adantr | ⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) |
| 63 | ltso | ⊢ < Or ℝ | |
| 64 | 63 | a1i | ⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → < Or ℝ ) |
| 65 | dvdszrcl | ⊢ ( 𝐷 ∥ 𝑀 → ( 𝐷 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) | |
| 66 | 65 | simpld | ⊢ ( 𝐷 ∥ 𝑀 → 𝐷 ∈ ℤ ) |
| 67 | 66 | zred | ⊢ ( 𝐷 ∥ 𝑀 → 𝐷 ∈ ℝ ) |
| 68 | 67 | adantr | ⊢ ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) → 𝐷 ∈ ℝ ) |
| 69 | 68 | 3ad2ant2 | ⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → 𝐷 ∈ ℝ ) |
| 70 | 69 | ad2antll | ⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → 𝐷 ∈ ℝ ) |
| 71 | breq1 | ⊢ ( 𝑛 = 𝑦 → ( 𝑛 ∥ 𝑀 ↔ 𝑦 ∥ 𝑀 ) ) | |
| 72 | breq1 | ⊢ ( 𝑛 = 𝑦 → ( 𝑛 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁 ) ) | |
| 73 | 71 72 | anbi12d | ⊢ ( 𝑛 = 𝑦 → ( ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) ↔ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ) |
| 74 | 73 | elrab | ⊢ ( 𝑦 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } ↔ ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ) |
| 75 | breq1 | ⊢ ( 𝑒 = 𝑦 → ( 𝑒 ∥ 𝑀 ↔ 𝑦 ∥ 𝑀 ) ) | |
| 76 | breq1 | ⊢ ( 𝑒 = 𝑦 → ( 𝑒 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁 ) ) | |
| 77 | 75 76 | anbi12d | ⊢ ( 𝑒 = 𝑦 → ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) ↔ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ) |
| 78 | breq1 | ⊢ ( 𝑒 = 𝑦 → ( 𝑒 ∥ 𝐷 ↔ 𝑦 ∥ 𝐷 ) ) | |
| 79 | 77 78 | imbi12d | ⊢ ( 𝑒 = 𝑦 → ( ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ↔ ( ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) → 𝑦 ∥ 𝐷 ) ) ) |
| 80 | 79 | rspcv | ⊢ ( 𝑦 ∈ ℤ → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → ( ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) → 𝑦 ∥ 𝐷 ) ) ) |
| 81 | 80 | com23 | ⊢ ( 𝑦 ∈ ℤ → ( ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → 𝑦 ∥ 𝐷 ) ) ) |
| 82 | 81 | imp | ⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → 𝑦 ∥ 𝐷 ) ) |
| 83 | 82 | ad2antrr | ⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → 𝑦 ∥ 𝐷 ) ) |
| 84 | elnn0z | ⊢ ( 𝐷 ∈ ℕ0 ↔ ( 𝐷 ∈ ℤ ∧ 0 ≤ 𝐷 ) ) | |
| 85 | 84 | simplbi2 | ⊢ ( 𝐷 ∈ ℤ → ( 0 ≤ 𝐷 → 𝐷 ∈ ℕ0 ) ) |
| 86 | 85 | adantr | ⊢ ( ( 𝐷 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 0 ≤ 𝐷 → 𝐷 ∈ ℕ0 ) ) |
| 87 | 65 86 | syl | ⊢ ( 𝐷 ∥ 𝑀 → ( 0 ≤ 𝐷 → 𝐷 ∈ ℕ0 ) ) |
| 88 | 87 | adantr | ⊢ ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) → ( 0 ≤ 𝐷 → 𝐷 ∈ ℕ0 ) ) |
| 89 | 88 | impcom | ⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ0 ) |
| 90 | simp-4l | ⊢ ( ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ 𝐷 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) → 𝑦 ∈ ℤ ) | |
| 91 | elnn0 | ⊢ ( 𝐷 ∈ ℕ0 ↔ ( 𝐷 ∈ ℕ ∨ 𝐷 = 0 ) ) | |
| 92 | 2a1 | ⊢ ( 𝐷 ∈ ℕ → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) ) | |
| 93 | breq1 | ⊢ ( 𝐷 = 0 → ( 𝐷 ∥ 𝑀 ↔ 0 ∥ 𝑀 ) ) | |
| 94 | breq1 | ⊢ ( 𝐷 = 0 → ( 𝐷 ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) | |
| 95 | 93 94 | anbi12d | ⊢ ( 𝐷 = 0 → ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ↔ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) ) |
| 96 | 95 | anbi2d | ⊢ ( 𝐷 = 0 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ↔ ( 0 ≤ 𝐷 ∧ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) ) ) |
| 97 | 96 | adantr | ⊢ ( ( 𝐷 = 0 ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ↔ ( 0 ≤ 𝐷 ∧ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) ) ) |
| 98 | ianor | ⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ↔ ( ¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0 ) ) | |
| 99 | dvdszrcl | ⊢ ( 0 ∥ 𝑀 → ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) | |
| 100 | 0dvds | ⊢ ( 𝑀 ∈ ℤ → ( 0 ∥ 𝑀 ↔ 𝑀 = 0 ) ) | |
| 101 | pm2.24 | ⊢ ( 𝑀 = 0 → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) | |
| 102 | 100 101 | biimtrdi | ⊢ ( 𝑀 ∈ ℤ → ( 0 ∥ 𝑀 → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) ) |
| 103 | 102 | adantl | ⊢ ( ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 0 ∥ 𝑀 → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) ) |
| 104 | 99 103 | mpcom | ⊢ ( 0 ∥ 𝑀 → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) |
| 105 | 104 | adantr | ⊢ ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → ( ¬ 𝑀 = 0 → 𝐷 ∈ ℕ ) ) |
| 106 | 105 | com12 | ⊢ ( ¬ 𝑀 = 0 → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → 𝐷 ∈ ℕ ) ) |
| 107 | dvdszrcl | ⊢ ( 0 ∥ 𝑁 → ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 108 | 0dvds | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) | |
| 109 | pm2.24 | ⊢ ( 𝑁 = 0 → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) | |
| 110 | 108 109 | biimtrdi | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) ) |
| 111 | 110 | adantl | ⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∥ 𝑁 → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) ) |
| 112 | 107 111 | mpcom | ⊢ ( 0 ∥ 𝑁 → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) |
| 113 | 112 | adantl | ⊢ ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → ( ¬ 𝑁 = 0 → 𝐷 ∈ ℕ ) ) |
| 114 | 113 | com12 | ⊢ ( ¬ 𝑁 = 0 → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → 𝐷 ∈ ℕ ) ) |
| 115 | 106 114 | jaoi | ⊢ ( ( ¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0 ) → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → 𝐷 ∈ ℕ ) ) |
| 116 | 98 115 | sylbi | ⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) → 𝐷 ∈ ℕ ) ) |
| 117 | 116 | adantld | ⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ≤ 𝐷 ∧ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) |
| 118 | 117 | ad2antll | ⊢ ( ( 𝐷 = 0 ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ( ( 0 ≤ 𝐷 ∧ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) |
| 119 | 97 118 | sylbid | ⊢ ( ( 𝐷 = 0 ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) |
| 120 | 119 | ex | ⊢ ( 𝐷 = 0 → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) ) |
| 121 | 92 120 | jaoi | ⊢ ( ( 𝐷 ∈ ℕ ∨ 𝐷 = 0 ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) ) |
| 122 | 91 121 | sylbi | ⊢ ( 𝐷 ∈ ℕ0 → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) ) |
| 123 | 122 | impcom | ⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ 𝐷 ∈ ℕ0 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → 𝐷 ∈ ℕ ) ) |
| 124 | 123 | imp | ⊢ ( ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ 𝐷 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) → 𝐷 ∈ ℕ ) |
| 125 | dvdsle | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( 𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷 ) ) | |
| 126 | 90 124 125 | syl2anc | ⊢ ( ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ 𝐷 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) → ( 𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷 ) ) |
| 127 | 126 | exp31 | ⊢ ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝐷 ∈ ℕ0 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( 𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷 ) ) ) ) |
| 128 | 127 | com14 | ⊢ ( 𝑦 ∥ 𝐷 → ( 𝐷 ∈ ℕ0 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝑦 ≤ 𝐷 ) ) ) ) |
| 129 | 128 | imp | ⊢ ( ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝑦 ≤ 𝐷 ) ) ) |
| 130 | 129 | impcom | ⊢ ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝑦 ≤ 𝐷 ) ) |
| 131 | 130 | imp | ⊢ ( ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → 𝑦 ≤ 𝐷 ) |
| 132 | zre | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) | |
| 133 | 132 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝑦 ∈ ℝ ) |
| 134 | 68 | ad2antlr | ⊢ ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) → 𝐷 ∈ ℝ ) |
| 135 | lenlt | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝑦 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑦 ) ) | |
| 136 | 133 134 135 | syl2anr | ⊢ ( ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ( 𝑦 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑦 ) ) |
| 137 | 131 136 | mpbid | ⊢ ( ( ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ∧ ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) → ¬ 𝐷 < 𝑦 ) |
| 138 | 137 | exp31 | ⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( ( 𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0 ) → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
| 139 | 89 138 | mpan2d | ⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( 𝑦 ∥ 𝐷 → ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
| 140 | 139 | com13 | ⊢ ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑦 ∥ 𝐷 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
| 141 | 140 | adantr | ⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑦 ∥ 𝐷 → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
| 142 | 83 141 | syld | ⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
| 143 | 142 | com13 | ⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) → ( ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) → ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ¬ 𝐷 < 𝑦 ) ) ) |
| 144 | 143 | 3impia | ⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ¬ 𝐷 < 𝑦 ) ) |
| 145 | 144 | com12 | ⊢ ( ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → ¬ 𝐷 < 𝑦 ) ) |
| 146 | 145 | expimpd | ⊢ ( ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → ¬ 𝐷 < 𝑦 ) ) |
| 147 | 146 | expimpd | ⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁 ) ) → ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → ¬ 𝐷 < 𝑦 ) ) |
| 148 | 74 147 | sylbi | ⊢ ( 𝑦 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } → ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → ¬ 𝐷 < 𝑦 ) ) |
| 149 | 148 | impcom | ⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ 𝑦 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } ) → ¬ 𝐷 < 𝑦 ) |
| 150 | 66 | adantr | ⊢ ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) → 𝐷 ∈ ℤ ) |
| 151 | 150 | ancri | ⊢ ( ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) → ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
| 152 | 151 | 3ad2ant2 | ⊢ ( ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) → ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
| 153 | 152 | ad2antll | ⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
| 154 | 153 | adantr | ⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) → ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
| 155 | breq1 | ⊢ ( 𝑛 = 𝐷 → ( 𝑛 ∥ 𝑀 ↔ 𝐷 ∥ 𝑀 ) ) | |
| 156 | breq1 | ⊢ ( 𝑛 = 𝐷 → ( 𝑛 ∥ 𝑁 ↔ 𝐷 ∥ 𝑁 ) ) | |
| 157 | 155 156 | anbi12d | ⊢ ( 𝑛 = 𝐷 → ( ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) ↔ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
| 158 | 157 | elrab | ⊢ ( 𝐷 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } ↔ ( 𝐷 ∈ ℤ ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ) ) |
| 159 | 154 158 | sylibr | ⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) → 𝐷 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } ) |
| 160 | breq2 | ⊢ ( 𝑧 = 𝐷 → ( 𝑦 < 𝑧 ↔ 𝑦 < 𝐷 ) ) | |
| 161 | 160 | adantl | ⊢ ( ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) ∧ 𝑧 = 𝐷 ) → ( 𝑦 < 𝑧 ↔ 𝑦 < 𝐷 ) ) |
| 162 | simprr | ⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) → 𝑦 < 𝐷 ) | |
| 163 | 159 161 162 | rspcedvd | ⊢ ( ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐷 ) ) → ∃ 𝑧 ∈ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } 𝑦 < 𝑧 ) |
| 164 | 64 70 149 163 | eqsupd | ⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) = 𝐷 ) |
| 165 | 62 164 | eqtrd | ⊢ ( ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ∧ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 𝐷 ) |
| 166 | 60 165 | pm2.61ian | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = 𝐷 ) |
| 167 | 22 166 | eqtr2d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) → 𝐷 = ( 𝑀 gcd 𝑁 ) ) |
| 168 | 20 167 | impbida | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐷 = ( 𝑀 gcd 𝑁 ) ↔ ( 0 ≤ 𝐷 ∧ ( 𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁 ) ∧ ∀ 𝑒 ∈ ℤ ( ( 𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁 ) → 𝑒 ∥ 𝐷 ) ) ) ) |