This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the gcd operator, see definition in ApostolNT p. 15. (Contributed by AV, 8-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfgcd2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( D = ( M gcd N ) <-> ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
|
| 2 | 1 | nn0ge0d | |- ( ( M e. ZZ /\ N e. ZZ ) -> 0 <_ ( M gcd N ) ) |
| 3 | gcddvds | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
|
| 4 | 3anass | |- ( ( e e. ZZ /\ M e. ZZ /\ N e. ZZ ) <-> ( e e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) ) |
|
| 5 | 4 | biancomi | |- ( ( e e. ZZ /\ M e. ZZ /\ N e. ZZ ) <-> ( ( M e. ZZ /\ N e. ZZ ) /\ e e. ZZ ) ) |
| 6 | dvdsgcd | |- ( ( e e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) |
|
| 7 | 5 6 | sylbir | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ e e. ZZ ) -> ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) |
| 8 | 7 | ralrimiva | |- ( ( M e. ZZ /\ N e. ZZ ) -> A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) |
| 9 | 2 3 8 | 3jca | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 <_ ( M gcd N ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) |
| 10 | 9 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ D = ( M gcd N ) ) -> ( 0 <_ ( M gcd N ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) |
| 11 | breq2 | |- ( D = ( M gcd N ) -> ( 0 <_ D <-> 0 <_ ( M gcd N ) ) ) |
|
| 12 | breq1 | |- ( D = ( M gcd N ) -> ( D || M <-> ( M gcd N ) || M ) ) |
|
| 13 | breq1 | |- ( D = ( M gcd N ) -> ( D || N <-> ( M gcd N ) || N ) ) |
|
| 14 | 12 13 | anbi12d | |- ( D = ( M gcd N ) -> ( ( D || M /\ D || N ) <-> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) ) |
| 15 | breq2 | |- ( D = ( M gcd N ) -> ( e || D <-> e || ( M gcd N ) ) ) |
|
| 16 | 15 | imbi2d | |- ( D = ( M gcd N ) -> ( ( ( e || M /\ e || N ) -> e || D ) <-> ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) |
| 17 | 16 | ralbidv | |- ( D = ( M gcd N ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) <-> A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) |
| 18 | 11 14 17 | 3anbi123d | |- ( D = ( M gcd N ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) <-> ( 0 <_ ( M gcd N ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) ) |
| 19 | 18 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ D = ( M gcd N ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) <-> ( 0 <_ ( M gcd N ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) ) |
| 20 | 10 19 | mpbird | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ D = ( M gcd N ) ) -> ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) |
| 21 | gcdval | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
|
| 22 | 21 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> ( M gcd N ) = if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
| 23 | iftrue | |- ( ( M = 0 /\ N = 0 ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = 0 ) |
|
| 24 | 23 | adantr | |- ( ( ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = 0 ) |
| 25 | breq2 | |- ( M = 0 -> ( D || M <-> D || 0 ) ) |
|
| 26 | breq2 | |- ( N = 0 -> ( D || N <-> D || 0 ) ) |
|
| 27 | 25 26 | bi2anan9 | |- ( ( M = 0 /\ N = 0 ) -> ( ( D || M /\ D || N ) <-> ( D || 0 /\ D || 0 ) ) ) |
| 28 | breq2 | |- ( M = 0 -> ( e || M <-> e || 0 ) ) |
|
| 29 | breq2 | |- ( N = 0 -> ( e || N <-> e || 0 ) ) |
|
| 30 | 28 29 | bi2anan9 | |- ( ( M = 0 /\ N = 0 ) -> ( ( e || M /\ e || N ) <-> ( e || 0 /\ e || 0 ) ) ) |
| 31 | 30 | imbi1d | |- ( ( M = 0 /\ N = 0 ) -> ( ( ( e || M /\ e || N ) -> e || D ) <-> ( ( e || 0 /\ e || 0 ) -> e || D ) ) ) |
| 32 | 31 | ralbidv | |- ( ( M = 0 /\ N = 0 ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) <-> A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) ) ) |
| 33 | 27 32 | 3anbi23d | |- ( ( M = 0 /\ N = 0 ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) <-> ( 0 <_ D /\ ( D || 0 /\ D || 0 ) /\ A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) ) ) ) |
| 34 | dvdszrcl | |- ( D || 0 -> ( D e. ZZ /\ 0 e. ZZ ) ) |
|
| 35 | dvds0 | |- ( e e. ZZ -> e || 0 ) |
|
| 36 | 35 35 | jca | |- ( e e. ZZ -> ( e || 0 /\ e || 0 ) ) |
| 37 | 36 | adantl | |- ( ( ( D e. ZZ /\ 0 <_ D ) /\ e e. ZZ ) -> ( e || 0 /\ e || 0 ) ) |
| 38 | pm5.5 | |- ( ( e || 0 /\ e || 0 ) -> ( ( ( e || 0 /\ e || 0 ) -> e || D ) <-> e || D ) ) |
|
| 39 | 37 38 | syl | |- ( ( ( D e. ZZ /\ 0 <_ D ) /\ e e. ZZ ) -> ( ( ( e || 0 /\ e || 0 ) -> e || D ) <-> e || D ) ) |
| 40 | 39 | ralbidva | |- ( ( D e. ZZ /\ 0 <_ D ) -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) <-> A. e e. ZZ e || D ) ) |
| 41 | 0z | |- 0 e. ZZ |
|
| 42 | breq1 | |- ( e = 0 -> ( e || D <-> 0 || D ) ) |
|
| 43 | 42 | rspcv | |- ( 0 e. ZZ -> ( A. e e. ZZ e || D -> 0 || D ) ) |
| 44 | 41 43 | ax-mp | |- ( A. e e. ZZ e || D -> 0 || D ) |
| 45 | 0dvds | |- ( D e. ZZ -> ( 0 || D <-> D = 0 ) ) |
|
| 46 | 45 | biimpd | |- ( D e. ZZ -> ( 0 || D -> D = 0 ) ) |
| 47 | eqcom | |- ( 0 = D <-> D = 0 ) |
|
| 48 | 46 47 | imbitrrdi | |- ( D e. ZZ -> ( 0 || D -> 0 = D ) ) |
| 49 | 44 48 | syl5 | |- ( D e. ZZ -> ( A. e e. ZZ e || D -> 0 = D ) ) |
| 50 | 49 | adantr | |- ( ( D e. ZZ /\ 0 <_ D ) -> ( A. e e. ZZ e || D -> 0 = D ) ) |
| 51 | 40 50 | sylbid | |- ( ( D e. ZZ /\ 0 <_ D ) -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) |
| 52 | 51 | ex | |- ( D e. ZZ -> ( 0 <_ D -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) ) |
| 53 | 52 | adantr | |- ( ( D e. ZZ /\ 0 e. ZZ ) -> ( 0 <_ D -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) ) |
| 54 | 34 53 | syl | |- ( D || 0 -> ( 0 <_ D -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) ) |
| 55 | 54 | adantr | |- ( ( D || 0 /\ D || 0 ) -> ( 0 <_ D -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) ) |
| 56 | 55 | 3imp21 | |- ( ( 0 <_ D /\ ( D || 0 /\ D || 0 ) /\ A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) ) -> 0 = D ) |
| 57 | 33 56 | biimtrdi | |- ( ( M = 0 /\ N = 0 ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> 0 = D ) ) |
| 58 | 57 | adantld | |- ( ( M = 0 /\ N = 0 ) -> ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> 0 = D ) ) |
| 59 | 58 | imp | |- ( ( ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> 0 = D ) |
| 60 | 24 59 | eqtrd | |- ( ( ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = D ) |
| 61 | iffalse | |- ( -. ( M = 0 /\ N = 0 ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
|
| 62 | 61 | adantr | |- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
| 63 | ltso | |- < Or RR |
|
| 64 | 63 | a1i | |- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> < Or RR ) |
| 65 | dvdszrcl | |- ( D || M -> ( D e. ZZ /\ M e. ZZ ) ) |
|
| 66 | 65 | simpld | |- ( D || M -> D e. ZZ ) |
| 67 | 66 | zred | |- ( D || M -> D e. RR ) |
| 68 | 67 | adantr | |- ( ( D || M /\ D || N ) -> D e. RR ) |
| 69 | 68 | 3ad2ant2 | |- ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> D e. RR ) |
| 70 | 69 | ad2antll | |- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> D e. RR ) |
| 71 | breq1 | |- ( n = y -> ( n || M <-> y || M ) ) |
|
| 72 | breq1 | |- ( n = y -> ( n || N <-> y || N ) ) |
|
| 73 | 71 72 | anbi12d | |- ( n = y -> ( ( n || M /\ n || N ) <-> ( y || M /\ y || N ) ) ) |
| 74 | 73 | elrab | |- ( y e. { n e. ZZ | ( n || M /\ n || N ) } <-> ( y e. ZZ /\ ( y || M /\ y || N ) ) ) |
| 75 | breq1 | |- ( e = y -> ( e || M <-> y || M ) ) |
|
| 76 | breq1 | |- ( e = y -> ( e || N <-> y || N ) ) |
|
| 77 | 75 76 | anbi12d | |- ( e = y -> ( ( e || M /\ e || N ) <-> ( y || M /\ y || N ) ) ) |
| 78 | breq1 | |- ( e = y -> ( e || D <-> y || D ) ) |
|
| 79 | 77 78 | imbi12d | |- ( e = y -> ( ( ( e || M /\ e || N ) -> e || D ) <-> ( ( y || M /\ y || N ) -> y || D ) ) ) |
| 80 | 79 | rspcv | |- ( y e. ZZ -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> ( ( y || M /\ y || N ) -> y || D ) ) ) |
| 81 | 80 | com23 | |- ( y e. ZZ -> ( ( y || M /\ y || N ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> y || D ) ) ) |
| 82 | 81 | imp | |- ( ( y e. ZZ /\ ( y || M /\ y || N ) ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> y || D ) ) |
| 83 | 82 | ad2antrr | |- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> y || D ) ) |
| 84 | elnn0z | |- ( D e. NN0 <-> ( D e. ZZ /\ 0 <_ D ) ) |
|
| 85 | 84 | simplbi2 | |- ( D e. ZZ -> ( 0 <_ D -> D e. NN0 ) ) |
| 86 | 85 | adantr | |- ( ( D e. ZZ /\ M e. ZZ ) -> ( 0 <_ D -> D e. NN0 ) ) |
| 87 | 65 86 | syl | |- ( D || M -> ( 0 <_ D -> D e. NN0 ) ) |
| 88 | 87 | adantr | |- ( ( D || M /\ D || N ) -> ( 0 <_ D -> D e. NN0 ) ) |
| 89 | 88 | impcom | |- ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN0 ) |
| 90 | simp-4l | |- ( ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ D e. NN0 ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) ) ) -> y e. ZZ ) |
|
| 91 | elnn0 | |- ( D e. NN0 <-> ( D e. NN \/ D = 0 ) ) |
|
| 92 | 2a1 | |- ( D e. NN -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) ) |
|
| 93 | breq1 | |- ( D = 0 -> ( D || M <-> 0 || M ) ) |
|
| 94 | breq1 | |- ( D = 0 -> ( D || N <-> 0 || N ) ) |
|
| 95 | 93 94 | anbi12d | |- ( D = 0 -> ( ( D || M /\ D || N ) <-> ( 0 || M /\ 0 || N ) ) ) |
| 96 | 95 | anbi2d | |- ( D = 0 -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) <-> ( 0 <_ D /\ ( 0 || M /\ 0 || N ) ) ) ) |
| 97 | 96 | adantr | |- ( ( D = 0 /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) <-> ( 0 <_ D /\ ( 0 || M /\ 0 || N ) ) ) ) |
| 98 | ianor | |- ( -. ( M = 0 /\ N = 0 ) <-> ( -. M = 0 \/ -. N = 0 ) ) |
|
| 99 | dvdszrcl | |- ( 0 || M -> ( 0 e. ZZ /\ M e. ZZ ) ) |
|
| 100 | 0dvds | |- ( M e. ZZ -> ( 0 || M <-> M = 0 ) ) |
|
| 101 | pm2.24 | |- ( M = 0 -> ( -. M = 0 -> D e. NN ) ) |
|
| 102 | 100 101 | biimtrdi | |- ( M e. ZZ -> ( 0 || M -> ( -. M = 0 -> D e. NN ) ) ) |
| 103 | 102 | adantl | |- ( ( 0 e. ZZ /\ M e. ZZ ) -> ( 0 || M -> ( -. M = 0 -> D e. NN ) ) ) |
| 104 | 99 103 | mpcom | |- ( 0 || M -> ( -. M = 0 -> D e. NN ) ) |
| 105 | 104 | adantr | |- ( ( 0 || M /\ 0 || N ) -> ( -. M = 0 -> D e. NN ) ) |
| 106 | 105 | com12 | |- ( -. M = 0 -> ( ( 0 || M /\ 0 || N ) -> D e. NN ) ) |
| 107 | dvdszrcl | |- ( 0 || N -> ( 0 e. ZZ /\ N e. ZZ ) ) |
|
| 108 | 0dvds | |- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
|
| 109 | pm2.24 | |- ( N = 0 -> ( -. N = 0 -> D e. NN ) ) |
|
| 110 | 108 109 | biimtrdi | |- ( N e. ZZ -> ( 0 || N -> ( -. N = 0 -> D e. NN ) ) ) |
| 111 | 110 | adantl | |- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 || N -> ( -. N = 0 -> D e. NN ) ) ) |
| 112 | 107 111 | mpcom | |- ( 0 || N -> ( -. N = 0 -> D e. NN ) ) |
| 113 | 112 | adantl | |- ( ( 0 || M /\ 0 || N ) -> ( -. N = 0 -> D e. NN ) ) |
| 114 | 113 | com12 | |- ( -. N = 0 -> ( ( 0 || M /\ 0 || N ) -> D e. NN ) ) |
| 115 | 106 114 | jaoi | |- ( ( -. M = 0 \/ -. N = 0 ) -> ( ( 0 || M /\ 0 || N ) -> D e. NN ) ) |
| 116 | 98 115 | sylbi | |- ( -. ( M = 0 /\ N = 0 ) -> ( ( 0 || M /\ 0 || N ) -> D e. NN ) ) |
| 117 | 116 | adantld | |- ( -. ( M = 0 /\ N = 0 ) -> ( ( 0 <_ D /\ ( 0 || M /\ 0 || N ) ) -> D e. NN ) ) |
| 118 | 117 | ad2antll | |- ( ( D = 0 /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> ( ( 0 <_ D /\ ( 0 || M /\ 0 || N ) ) -> D e. NN ) ) |
| 119 | 97 118 | sylbid | |- ( ( D = 0 /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) |
| 120 | 119 | ex | |- ( D = 0 -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) ) |
| 121 | 92 120 | jaoi | |- ( ( D e. NN \/ D = 0 ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) ) |
| 122 | 91 121 | sylbi | |- ( D e. NN0 -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) ) |
| 123 | 122 | impcom | |- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ D e. NN0 ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) |
| 124 | 123 | imp | |- ( ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ D e. NN0 ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) ) ) -> D e. NN ) |
| 125 | dvdsle | |- ( ( y e. ZZ /\ D e. NN ) -> ( y || D -> y <_ D ) ) |
|
| 126 | 90 124 125 | syl2anc | |- ( ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ D e. NN0 ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) ) ) -> ( y || D -> y <_ D ) ) |
| 127 | 126 | exp31 | |- ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( D e. NN0 -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( y || D -> y <_ D ) ) ) ) |
| 128 | 127 | com14 | |- ( y || D -> ( D e. NN0 -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> y <_ D ) ) ) ) |
| 129 | 128 | imp | |- ( ( y || D /\ D e. NN0 ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> y <_ D ) ) ) |
| 130 | 129 | impcom | |- ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> y <_ D ) ) |
| 131 | 130 | imp | |- ( ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> y <_ D ) |
| 132 | zre | |- ( y e. ZZ -> y e. RR ) |
|
| 133 | 132 | ad2antrr | |- ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> y e. RR ) |
| 134 | 68 | ad2antlr | |- ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) -> D e. RR ) |
| 135 | lenlt | |- ( ( y e. RR /\ D e. RR ) -> ( y <_ D <-> -. D < y ) ) |
|
| 136 | 133 134 135 | syl2anr | |- ( ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> ( y <_ D <-> -. D < y ) ) |
| 137 | 131 136 | mpbid | |- ( ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> -. D < y ) |
| 138 | 137 | exp31 | |- ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( ( y || D /\ D e. NN0 ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> -. D < y ) ) ) |
| 139 | 89 138 | mpan2d | |- ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( y || D -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> -. D < y ) ) ) |
| 140 | 139 | com13 | |- ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( y || D -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> -. D < y ) ) ) |
| 141 | 140 | adantr | |- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( y || D -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> -. D < y ) ) ) |
| 142 | 83 141 | syld | |- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> -. D < y ) ) ) |
| 143 | 142 | com13 | |- ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> -. D < y ) ) ) |
| 144 | 143 | 3impia | |- ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> -. D < y ) ) |
| 145 | 144 | com12 | |- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> -. D < y ) ) |
| 146 | 145 | expimpd | |- ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> -. D < y ) ) |
| 147 | 146 | expimpd | |- ( ( y e. ZZ /\ ( y || M /\ y || N ) ) -> ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> -. D < y ) ) |
| 148 | 74 147 | sylbi | |- ( y e. { n e. ZZ | ( n || M /\ n || N ) } -> ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> -. D < y ) ) |
| 149 | 148 | impcom | |- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ y e. { n e. ZZ | ( n || M /\ n || N ) } ) -> -. D < y ) |
| 150 | 66 | adantr | |- ( ( D || M /\ D || N ) -> D e. ZZ ) |
| 151 | 150 | ancri | |- ( ( D || M /\ D || N ) -> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
| 152 | 151 | 3ad2ant2 | |- ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
| 153 | 152 | ad2antll | |- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
| 154 | 153 | adantr | |- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) -> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
| 155 | breq1 | |- ( n = D -> ( n || M <-> D || M ) ) |
|
| 156 | breq1 | |- ( n = D -> ( n || N <-> D || N ) ) |
|
| 157 | 155 156 | anbi12d | |- ( n = D -> ( ( n || M /\ n || N ) <-> ( D || M /\ D || N ) ) ) |
| 158 | 157 | elrab | |- ( D e. { n e. ZZ | ( n || M /\ n || N ) } <-> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
| 159 | 154 158 | sylibr | |- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) -> D e. { n e. ZZ | ( n || M /\ n || N ) } ) |
| 160 | breq2 | |- ( z = D -> ( y < z <-> y < D ) ) |
|
| 161 | 160 | adantl | |- ( ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) /\ z = D ) -> ( y < z <-> y < D ) ) |
| 162 | simprr | |- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) -> y < D ) |
|
| 163 | 159 161 162 | rspcedvd | |- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) -> E. z e. { n e. ZZ | ( n || M /\ n || N ) } y < z ) |
| 164 | 64 70 149 163 | eqsupd | |- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) = D ) |
| 165 | 62 164 | eqtrd | |- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = D ) |
| 166 | 60 165 | pm2.61ian | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = D ) |
| 167 | 22 166 | eqtr2d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> D = ( M gcd N ) ) |
| 168 | 20 167 | impbida | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( D = ( M gcd N ) <-> ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) |