This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for gcd operator. Theorem 1.4(b) in ApostolNT p. 16. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdass | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass | ⊢ ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) ↔ ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ) | |
| 2 | anass | ⊢ ( ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) ↔ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) ) | |
| 3 | 2 | rabbii | ⊢ { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } = { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } |
| 4 | 3 | supeq1i | ⊢ sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) = sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) |
| 5 | 1 4 | ifbieq2i | ⊢ if ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) ) |
| 6 | gcdcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) ∈ ℕ0 ) | |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) ∈ ℕ0 ) |
| 8 | 7 | nn0zd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) ∈ ℤ ) |
| 9 | simp3 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑃 ∈ ℤ ) | |
| 10 | gcdval | ⊢ ( ( ( 𝑁 gcd 𝑀 ) ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = if ( ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) ) | |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = if ( ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) ) |
| 12 | gcdeq0 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) = 0 ↔ ( 𝑁 = 0 ∧ 𝑀 = 0 ) ) ) | |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) = 0 ↔ ( 𝑁 = 0 ∧ 𝑀 = 0 ) ) ) |
| 14 | 13 | anbi1d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) ↔ ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) ) ) |
| 15 | 14 | bicomd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) ↔ ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) ) ) |
| 16 | simpr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) | |
| 17 | simpl1 | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 18 | simpl2 | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 19 | dvdsgcdb | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ↔ 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ) ) | |
| 20 | 16 17 18 19 | syl3anc | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ↔ 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ) ) |
| 21 | 20 | anbi1d | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) ↔ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) ) ) |
| 22 | 21 | rabbidva | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } = { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } ) |
| 23 | 22 | supeq1d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) = sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) |
| 24 | 15 23 | ifbieq2d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → if ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) = if ( ( ( 𝑁 gcd 𝑀 ) = 0 ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ ( 𝑁 gcd 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) ) |
| 25 | 11 24 | eqtr4d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = if ( ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) ∧ 𝑃 = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ 𝑀 ) ∧ 𝑥 ∥ 𝑃 ) } , ℝ , < ) ) ) |
| 26 | simp1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 27 | gcdcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑀 gcd 𝑃 ) ∈ ℕ0 ) | |
| 28 | 27 | 3adant1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑀 gcd 𝑃 ) ∈ ℕ0 ) |
| 29 | 28 | nn0zd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑀 gcd 𝑃 ) ∈ ℤ ) |
| 30 | gcdval | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 gcd 𝑃 ) ∈ ℤ ) → ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } , ℝ , < ) ) ) | |
| 31 | 26 29 30 | syl2anc | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } , ℝ , < ) ) ) |
| 32 | gcdeq0 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑀 gcd 𝑃 ) = 0 ↔ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ) | |
| 33 | 32 | 3adant1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑀 gcd 𝑃 ) = 0 ↔ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ) |
| 34 | 33 | anbi2d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) ↔ ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ) ) |
| 35 | 34 | bicomd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) ↔ ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) ) ) |
| 36 | simpl3 | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → 𝑃 ∈ ℤ ) | |
| 37 | dvdsgcdb | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ↔ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) ) | |
| 38 | 16 18 36 37 | syl3anc | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ↔ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) ) |
| 39 | 38 | anbi2d | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) ↔ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) ) ) |
| 40 | 39 | rabbidva | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } = { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } ) |
| 41 | 40 | supeq1d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) = sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } , ℝ , < ) ) |
| 42 | 35 41 | ifbieq2d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → if ( ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 gcd 𝑃 ) = 0 ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ 𝑥 ∥ ( 𝑀 gcd 𝑃 ) ) } , ℝ , < ) ) ) |
| 43 | 31 42 | eqtr4d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) = if ( ( 𝑁 = 0 ∧ ( 𝑀 = 0 ∧ 𝑃 = 0 ) ) , 0 , sup ( { 𝑥 ∈ ℤ ∣ ( 𝑥 ∥ 𝑁 ∧ ( 𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑃 ) ) } , ℝ , < ) ) ) |
| 44 | 5 25 43 | 3eqtr4a | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝑁 gcd 𝑀 ) gcd 𝑃 ) = ( 𝑁 gcd ( 𝑀 gcd 𝑃 ) ) ) |