This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of df-fr . See dffr5 for a definition without dummy variables (but note that their equivalence uses ax-sep ). (Contributed by BJ, 16-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffr6 | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 2 | 1 | bicomi | ⊢ ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ 𝒫 𝐴 ) |
| 3 | velsn | ⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) | |
| 4 | 3 | bicomi | ⊢ ( 𝑥 = ∅ ↔ 𝑥 ∈ { ∅ } ) |
| 5 | 4 | necon3abii | ⊢ ( 𝑥 ≠ ∅ ↔ ¬ 𝑥 ∈ { ∅ } ) |
| 6 | 2 5 | anbi12i | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ { ∅ } ) ) |
| 7 | eldif | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ { ∅ } ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ↔ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 9 | 8 | imbi1i | ⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 10 | 9 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 11 | df-fr | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) | |
| 12 | df-ral | ⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) | |
| 13 | 10 11 12 | 3bitr4i | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) |