This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subset of an R -well-founded class has an R -minimal element (deduction form). (Contributed by BJ, 16-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frd.fr | ⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) | |
| frd.ss | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | ||
| frd.ex | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| frd.n0 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
| Assertion | frd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frd.fr | ⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) | |
| 2 | frd.ss | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 3 | frd.ex | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 4 | frd.n0 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐵 ) | |
| 6 | biidd | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝐵 ) → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑥 ) ) | |
| 7 | 5 6 | raleqbidv | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
| 8 | 5 7 | rexeqbidv | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝐵 ) → ( ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
| 9 | 3 2 | elpwd | ⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝐴 ) |
| 10 | nelsn | ⊢ ( 𝐵 ≠ ∅ → ¬ 𝐵 ∈ { ∅ } ) | |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → ¬ 𝐵 ∈ { ∅ } ) |
| 12 | 9 11 | eldifd | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 13 | dffr6 | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ) | |
| 14 | 1 13 | sylib | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ) |
| 15 | 8 12 14 | rspcdv2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |