This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quantifier-free definition of a well-founded relationship. (Contributed by Scott Fenton, 11-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffr5 | ⊢ ( 𝑅 Fr 𝐴 ↔ ( 𝒫 𝐴 ∖ { ∅ } ) ⊆ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ { ∅ } ) ) | |
| 2 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 3 | velsn | ⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) | |
| 4 | 3 | necon3bbii | ⊢ ( ¬ 𝑥 ∈ { ∅ } ↔ 𝑥 ≠ ∅ ) |
| 5 | 2 4 | anbi12i | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ { ∅ } ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
| 6 | 1 5 | bitri | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
| 7 | brdif | ⊢ ( 𝑦 ( E ∖ ( E ∘ ◡ 𝑅 ) ) 𝑥 ↔ ( 𝑦 E 𝑥 ∧ ¬ 𝑦 ( E ∘ ◡ 𝑅 ) 𝑥 ) ) | |
| 8 | epel | ⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) | |
| 9 | vex | ⊢ 𝑦 ∈ V | |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | 9 10 | coep | ⊢ ( 𝑦 ( E ∘ ◡ 𝑅 ) 𝑥 ↔ ∃ 𝑧 ∈ 𝑥 𝑦 ◡ 𝑅 𝑧 ) |
| 12 | vex | ⊢ 𝑧 ∈ V | |
| 13 | 9 12 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) |
| 14 | 13 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝑥 𝑦 ◡ 𝑅 𝑧 ↔ ∃ 𝑧 ∈ 𝑥 𝑧 𝑅 𝑦 ) |
| 15 | dfrex2 | ⊢ ( ∃ 𝑧 ∈ 𝑥 𝑧 𝑅 𝑦 ↔ ¬ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) | |
| 16 | 11 14 15 | 3bitrri | ⊢ ( ¬ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ↔ 𝑦 ( E ∘ ◡ 𝑅 ) 𝑥 ) |
| 17 | 16 | con1bii | ⊢ ( ¬ 𝑦 ( E ∘ ◡ 𝑅 ) 𝑥 ↔ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) |
| 18 | 8 17 | anbi12i | ⊢ ( ( 𝑦 E 𝑥 ∧ ¬ 𝑦 ( E ∘ ◡ 𝑅 ) 𝑥 ) ↔ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 19 | 7 18 | bitri | ⊢ ( 𝑦 ( E ∖ ( E ∘ ◡ 𝑅 ) ) 𝑥 ↔ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 20 | 19 | exbii | ⊢ ( ∃ 𝑦 𝑦 ( E ∖ ( E ∘ ◡ 𝑅 ) ) 𝑥 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 21 | 10 | elrn | ⊢ ( 𝑥 ∈ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ↔ ∃ 𝑦 𝑦 ( E ∖ ( E ∘ ◡ 𝑅 ) ) 𝑥 ) |
| 22 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) | |
| 23 | 20 21 22 | 3bitr4i | ⊢ ( 𝑥 ∈ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) |
| 24 | 6 23 | imbi12i | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑥 ∈ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 25 | 24 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑥 ∈ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 26 | df-ss | ⊢ ( ( 𝒫 𝐴 ∖ { ∅ } ) ⊆ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑥 ∈ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ) ) | |
| 27 | df-fr | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) | |
| 28 | 25 26 27 | 3bitr4ri | ⊢ ( 𝑅 Fr 𝐴 ↔ ( 𝒫 𝐴 ∖ { ∅ } ) ⊆ ran ( E ∖ ( E ∘ ◡ 𝑅 ) ) ) |