This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of df-fr . See dffr5 for a definition without dummy variables (but note that their equivalence uses ax-sep ). (Contributed by BJ, 16-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffr6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw | ||
| 2 | 1 | bicomi | |
| 3 | velsn | ||
| 4 | 3 | bicomi | |
| 5 | 4 | necon3abii | |
| 6 | 2 5 | anbi12i | |
| 7 | eldif | ||
| 8 | 6 7 | bitr4i | |
| 9 | 8 | imbi1i | |
| 10 | 9 | albii | |
| 11 | df-fr | ||
| 12 | df-ral | ||
| 13 | 10 11 12 | 3bitr4i |