This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of df-fr . See dffr5 for a definition without dummy variables (but note that their equivalence uses ax-sep ). (Contributed by BJ, 16-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffr6 | |- ( R Fr A <-> A. x e. ( ~P A \ { (/) } ) E. y e. x A. z e. x -. z R y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 2 | 1 | bicomi | |- ( x C_ A <-> x e. ~P A ) |
| 3 | velsn | |- ( x e. { (/) } <-> x = (/) ) |
|
| 4 | 3 | bicomi | |- ( x = (/) <-> x e. { (/) } ) |
| 5 | 4 | necon3abii | |- ( x =/= (/) <-> -. x e. { (/) } ) |
| 6 | 2 5 | anbi12i | |- ( ( x C_ A /\ x =/= (/) ) <-> ( x e. ~P A /\ -. x e. { (/) } ) ) |
| 7 | eldif | |- ( x e. ( ~P A \ { (/) } ) <-> ( x e. ~P A /\ -. x e. { (/) } ) ) |
|
| 8 | 6 7 | bitr4i | |- ( ( x C_ A /\ x =/= (/) ) <-> x e. ( ~P A \ { (/) } ) ) |
| 9 | 8 | imbi1i | |- ( ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) <-> ( x e. ( ~P A \ { (/) } ) -> E. y e. x A. z e. x -. z R y ) ) |
| 10 | 9 | albii | |- ( A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) <-> A. x ( x e. ( ~P A \ { (/) } ) -> E. y e. x A. z e. x -. z R y ) ) |
| 11 | df-fr | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) ) |
|
| 12 | df-ral | |- ( A. x e. ( ~P A \ { (/) } ) E. y e. x A. z e. x -. z R y <-> A. x ( x e. ( ~P A \ { (/) } ) -> E. y e. x A. z e. x -. z R y ) ) |
|
| 13 | 10 11 12 | 3bitr4i | |- ( R Fr A <-> A. x e. ( ~P A \ { (/) } ) E. y e. x A. z e. x -. z R y ) |