This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantifier-free definition of a strict order. (Contributed by Scott Fenton, 22-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfso2 | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ( 𝐴 × 𝐴 ) ⊆ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-so | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 2 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) | |
| 3 | brun | ⊢ ( 𝑥 ( I ∪ ◡ 𝑅 ) 𝑦 ↔ ( 𝑥 I 𝑦 ∨ 𝑥 ◡ 𝑅 𝑦 ) ) | |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 4 | ideq | ⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 4 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 8 | 5 7 | orbi12i | ⊢ ( ( 𝑥 I 𝑦 ∨ 𝑥 ◡ 𝑅 𝑦 ) ↔ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 9 | 3 8 | bitr2i | ⊢ ( ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ 𝑥 ( I ∪ ◡ 𝑅 ) 𝑦 ) |
| 10 | 9 | orbi2i | ⊢ ( ( 𝑥 𝑅 𝑦 ∨ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑥 𝑅 𝑦 ∨ 𝑥 ( I ∪ ◡ 𝑅 ) 𝑦 ) ) |
| 11 | 3orass | ⊢ ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑦 ∨ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 12 | brun | ⊢ ( 𝑥 ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) 𝑦 ↔ ( 𝑥 𝑅 𝑦 ∨ 𝑥 ( I ∪ ◡ 𝑅 ) 𝑦 ) ) | |
| 13 | 10 11 12 | 3bitr4i | ⊢ ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ 𝑥 ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) 𝑦 ) |
| 14 | df-br | ⊢ ( 𝑥 ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) | |
| 15 | 13 14 | bitr2i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ↔ ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 16 | 2 15 | imbi12i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 17 | 16 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 18 | relxp | ⊢ Rel ( 𝐴 × 𝐴 ) | |
| 19 | ssrel | ⊢ ( Rel ( 𝐴 × 𝐴 ) → ( ( 𝐴 × 𝐴 ) ⊆ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ) ) | |
| 20 | 18 19 | ax-mp | ⊢ ( ( 𝐴 × 𝐴 ) ⊆ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ) |
| 21 | r2al | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 22 | 17 20 21 | 3bitr4i | ⊢ ( ( 𝐴 × 𝐴 ) ⊆ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 23 | 22 | anbi2i | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐴 × 𝐴 ) ⊆ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 24 | 1 23 | bitr4i | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ( 𝐴 × 𝐴 ) ⊆ ( 𝑅 ∪ ( I ∪ ◡ 𝑅 ) ) ) ) |