This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of connectedness. (Contributed by Jeff Hankins, 9-Jul-2009) (Proof shortened by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfconn2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Conn ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | simpll | ⊢ ( ( ( 𝐽 ∈ Conn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝐽 ∈ Conn ) | |
| 3 | simplrl | ⊢ ( ( ( 𝐽 ∈ Conn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑥 ∈ 𝐽 ) | |
| 4 | simpr1 | ⊢ ( ( ( 𝐽 ∈ Conn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑥 ≠ ∅ ) | |
| 5 | simplrr | ⊢ ( ( ( 𝐽 ∈ Conn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑦 ∈ 𝐽 ) | |
| 6 | simpr2 | ⊢ ( ( ( 𝐽 ∈ Conn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑦 ≠ ∅ ) | |
| 7 | simpr3 | ⊢ ( ( ( 𝐽 ∈ Conn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) | |
| 8 | 1 2 3 4 5 6 7 | conndisj | ⊢ ( ( ( 𝐽 ∈ Conn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) |
| 9 | 8 | ex | ⊢ ( ( 𝐽 ∈ Conn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) |
| 10 | 9 | ralrimivva | ⊢ ( 𝐽 ∈ Conn → ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) |
| 11 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 12 | 1 | cldopn | ⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) |
| 14 | df-3an | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) | |
| 15 | ineq2 | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) ) | |
| 16 | disjdif | ⊢ ( 𝑥 ∩ ( ∪ 𝐽 ∖ 𝑥 ) ) = ∅ | |
| 17 | 15 16 | eqtrdi | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 18 | 17 | biantrud | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) |
| 19 | neeq1 | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( 𝑦 ≠ ∅ ↔ ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ ) ) | |
| 20 | 19 | anbi2d | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ) ↔ ( 𝑥 ≠ ∅ ∧ ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ ) ) ) |
| 21 | 18 20 | bitr3d | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ( 𝑥 ≠ ∅ ∧ ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ ) ) ) |
| 22 | 14 21 | bitrid | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ( 𝑥 ≠ ∅ ∧ ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ ) ) ) |
| 23 | uneq2 | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( 𝑥 ∪ 𝑦 ) = ( 𝑥 ∪ ( ∪ 𝐽 ∖ 𝑥 ) ) ) | |
| 24 | undif2 | ⊢ ( 𝑥 ∪ ( ∪ 𝐽 ∖ 𝑥 ) ) = ( 𝑥 ∪ ∪ 𝐽 ) | |
| 25 | 23 24 | eqtrdi | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( 𝑥 ∪ 𝑦 ) = ( 𝑥 ∪ ∪ 𝐽 ) ) |
| 26 | 25 | neeq1d | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ↔ ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) ) |
| 27 | 22 26 | imbi12d | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ 𝑥 ) → ( ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ↔ ( ( 𝑥 ≠ ∅ ∧ ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) ) ) |
| 28 | 27 | rspcv | ⊢ ( ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 → ( ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) → ( ( 𝑥 ≠ ∅ ∧ ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) ) ) |
| 29 | 13 28 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) → ( ( 𝑥 ≠ ∅ ∧ ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) ) ) |
| 30 | 1 | cldss | ⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 31 | 30 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 32 | ssequn1 | ⊢ ( 𝑥 ⊆ ∪ 𝐽 ↔ ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 ) | |
| 33 | 31 32 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 ) |
| 34 | ssdif0 | ⊢ ( ∪ 𝐽 ⊆ 𝑥 ↔ ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) | |
| 35 | idd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ⊆ 𝑥 → ∪ 𝐽 ⊆ 𝑥 ) ) | |
| 36 | 35 31 | jctild | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ⊆ 𝑥 → ( 𝑥 ⊆ ∪ 𝐽 ∧ ∪ 𝐽 ⊆ 𝑥 ) ) ) |
| 37 | eqss | ⊢ ( 𝑥 = ∪ 𝐽 ↔ ( 𝑥 ⊆ ∪ 𝐽 ∧ ∪ 𝐽 ⊆ 𝑥 ) ) | |
| 38 | 36 37 | imbitrrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ⊆ 𝑥 → 𝑥 = ∪ 𝐽 ) ) |
| 39 | 34 38 | biimtrrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ∪ 𝐽 ∖ 𝑥 ) = ∅ → 𝑥 = ∪ 𝐽 ) ) |
| 40 | 33 39 | embantd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) → 𝑥 = ∪ 𝐽 ) ) |
| 41 | 40 | orim2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑥 = ∅ ∨ ( ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) ) → ( 𝑥 = ∅ ∨ 𝑥 = ∪ 𝐽 ) ) ) |
| 42 | impexp | ⊢ ( ( ( 𝑥 ≠ ∅ ∧ ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) ↔ ( 𝑥 ≠ ∅ → ( ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) ) ) | |
| 43 | df-ne | ⊢ ( 𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅ ) | |
| 44 | id | ⊢ ( ( ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) → ( ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) ) | |
| 45 | 44 | necon4d | ⊢ ( ( ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) → ( ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) ) |
| 46 | id | ⊢ ( ( ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) → ( ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) ) | |
| 47 | 46 | necon3d | ⊢ ( ( ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) → ( ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) ) |
| 48 | 45 47 | impbii | ⊢ ( ( ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) ↔ ( ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) ) |
| 49 | 43 48 | imbi12i | ⊢ ( ( 𝑥 ≠ ∅ → ( ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) ) ↔ ( ¬ 𝑥 = ∅ → ( ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) ) ) |
| 50 | pm4.64 | ⊢ ( ( ¬ 𝑥 = ∅ → ( ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) ) ↔ ( 𝑥 = ∅ ∨ ( ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) ) ) | |
| 51 | 49 50 | bitri | ⊢ ( ( 𝑥 ≠ ∅ → ( ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) ) ↔ ( 𝑥 = ∅ ∨ ( ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) ) ) |
| 52 | 42 51 | bitri | ⊢ ( ( ( 𝑥 ≠ ∅ ∧ ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) ↔ ( 𝑥 = ∅ ∨ ( ( 𝑥 ∪ ∪ 𝐽 ) = ∪ 𝐽 → ( ∪ 𝐽 ∖ 𝑥 ) = ∅ ) ) ) |
| 53 | vex | ⊢ 𝑥 ∈ V | |
| 54 | 53 | elpr | ⊢ ( 𝑥 ∈ { ∅ , ∪ 𝐽 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = ∪ 𝐽 ) ) |
| 55 | 41 52 54 | 3imtr4g | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ( 𝑥 ≠ ∅ ∧ ( ∪ 𝐽 ∖ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∪ ∪ 𝐽 ) ≠ ∪ 𝐽 ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ) |
| 56 | 29 55 | syld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ) |
| 57 | 56 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → ( ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ) ) |
| 58 | 57 | com23 | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ) ) |
| 59 | 58 | imim2d | ⊢ ( 𝐽 ∈ Top → ( ( 𝑥 ∈ 𝐽 → ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) → ( 𝑥 ∈ 𝐽 → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ) ) ) |
| 60 | elin | ⊢ ( 𝑥 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ( 𝑥 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) | |
| 61 | 60 | imbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ) |
| 62 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ↔ ( 𝑥 ∈ 𝐽 → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ) ) | |
| 63 | 61 62 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ↔ ( 𝑥 ∈ 𝐽 → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ) ) |
| 64 | 59 63 | imbitrrdi | ⊢ ( 𝐽 ∈ Top → ( ( 𝑥 ∈ 𝐽 → ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) → ( 𝑥 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ) ) |
| 65 | 64 | alimdv | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ( 𝑥 ∈ 𝐽 → ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) → ∀ 𝑥 ( 𝑥 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ) ) |
| 66 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐽 → ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) ) | |
| 67 | df-ss | ⊢ ( ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ { ∅ , ∪ 𝐽 } ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) → 𝑥 ∈ { ∅ , ∪ 𝐽 } ) ) | |
| 68 | 65 66 67 | 3imtr4g | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) → ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ { ∅ , ∪ 𝐽 } ) ) |
| 69 | 1 | isconn2 | ⊢ ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ { ∅ , ∪ 𝐽 } ) ) |
| 70 | 69 | baib | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Conn ↔ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ { ∅ , ∪ 𝐽 } ) ) |
| 71 | 68 70 | sylibrd | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) → 𝐽 ∈ Conn ) ) |
| 72 | 11 71 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) → 𝐽 ∈ Conn ) ) |
| 73 | 10 72 | impbid2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Conn ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) ) |
| 74 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 75 | 74 | neeq2d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( 𝑥 ∪ 𝑦 ) ≠ 𝑋 ↔ ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) |
| 76 | 75 | imbi2d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ 𝑋 ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) ) |
| 77 | 76 | 2ralbidv | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) ) |
| 78 | 73 77 | bitr4d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Conn ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ 𝑋 ) ) ) |