This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008) (Proof shortened by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isconn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| connclo.1 | ⊢ ( 𝜑 → 𝐽 ∈ Conn ) | ||
| connclo.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) | ||
| connclo.3 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| conndisj.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐽 ) | ||
| conndisj.5 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
| conndisj.6 | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) | ||
| Assertion | conndisj | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ≠ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isconn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | connclo.1 | ⊢ ( 𝜑 → 𝐽 ∈ Conn ) | |
| 3 | connclo.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) | |
| 4 | connclo.3 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 5 | conndisj.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐽 ) | |
| 6 | conndisj.5 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
| 7 | conndisj.6 | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| 8 | elssuni | ⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽 ) | |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐽 ) |
| 10 | 9 1 | sseqtrrdi | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
| 11 | uneqdifeq | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐴 ∪ 𝐵 ) = 𝑋 ↔ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) ) | |
| 12 | 10 7 11 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) = 𝑋 ↔ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → ( 𝑋 ∖ 𝐴 ) = 𝐵 ) | |
| 14 | 13 | difeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∖ 𝐵 ) ) |
| 15 | dfss4 | ⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = 𝐴 ) | |
| 16 | 10 15 | sylib | ⊢ ( 𝜑 → ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = 𝐴 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝐴 ) ) = 𝐴 ) |
| 18 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → 𝐽 ∈ Conn ) |
| 19 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → 𝐵 ∈ 𝐽 ) |
| 20 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → 𝐵 ≠ ∅ ) |
| 21 | 1 | isconn | ⊢ ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) ) |
| 22 | 21 | simplbi | ⊢ ( 𝐽 ∈ Conn → 𝐽 ∈ Top ) |
| 23 | 2 22 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 24 | 1 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( 𝑋 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 25 | 23 3 24 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → ( 𝑋 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 27 | 13 26 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |
| 28 | 1 18 19 20 27 | connclo | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → 𝐵 = 𝑋 ) |
| 29 | 28 | difeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → ( 𝑋 ∖ 𝐵 ) = ( 𝑋 ∖ 𝑋 ) ) |
| 30 | difid | ⊢ ( 𝑋 ∖ 𝑋 ) = ∅ | |
| 31 | 29 30 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → ( 𝑋 ∖ 𝐵 ) = ∅ ) |
| 32 | 14 17 31 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∖ 𝐴 ) = 𝐵 ) → 𝐴 = ∅ ) |
| 33 | 32 | ex | ⊢ ( 𝜑 → ( ( 𝑋 ∖ 𝐴 ) = 𝐵 → 𝐴 = ∅ ) ) |
| 34 | 12 33 | sylbid | ⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) = 𝑋 → 𝐴 = ∅ ) ) |
| 35 | 34 | necon3d | ⊢ ( 𝜑 → ( 𝐴 ≠ ∅ → ( 𝐴 ∪ 𝐵 ) ≠ 𝑋 ) ) |
| 36 | 4 35 | mpd | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ≠ 𝑋 ) |