This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Connectedness for a subspace. See connsub . (Contributed by FL, 29-May-2014) (Proof shortened by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | connsuba | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) | |
| 2 | dfconn2 | ⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) → ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ↔ ∀ 𝑢 ∈ ( 𝐽 ↾t 𝐴 ) ∀ 𝑣 ∈ ( 𝐽 ↾t 𝐴 ) ( ( 𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ( 𝑢 ∪ 𝑣 ) ≠ 𝐴 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ↔ ∀ 𝑢 ∈ ( 𝐽 ↾t 𝐴 ) ∀ 𝑣 ∈ ( 𝐽 ↾t 𝐴 ) ( ( 𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ( 𝑢 ∪ 𝑣 ) ≠ 𝐴 ) ) ) |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 4 | inex1 | ⊢ ( 𝑥 ∩ 𝐴 ) ∈ V |
| 6 | 5 | a1i | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∩ 𝐴 ) ∈ V ) |
| 7 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 9 | simpr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) | |
| 10 | 8 9 | ssexd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 11 | elrest | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ V ) → ( 𝑢 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐽 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ) | |
| 12 | 10 11 | syldan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑢 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐽 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ) |
| 13 | vex | ⊢ 𝑦 ∈ V | |
| 14 | 13 | inex1 | ⊢ ( 𝑦 ∩ 𝐴 ) ∈ V |
| 15 | 14 | a1i | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑦 ∩ 𝐴 ) ∈ V ) |
| 16 | elrest | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ V ) → ( 𝑣 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐽 𝑣 = ( 𝑦 ∩ 𝐴 ) ) ) | |
| 17 | 10 16 | syldan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑣 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐽 𝑣 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) → ( 𝑣 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐽 𝑣 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 19 | simplr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑣 = ( 𝑦 ∩ 𝐴 ) ) → 𝑢 = ( 𝑥 ∩ 𝐴 ) ) | |
| 20 | 19 | neeq1d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑣 = ( 𝑦 ∩ 𝐴 ) ) → ( 𝑢 ≠ ∅ ↔ ( 𝑥 ∩ 𝐴 ) ≠ ∅ ) ) |
| 21 | simpr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑣 = ( 𝑦 ∩ 𝐴 ) ) → 𝑣 = ( 𝑦 ∩ 𝐴 ) ) | |
| 22 | 21 | neeq1d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑣 = ( 𝑦 ∩ 𝐴 ) ) → ( 𝑣 ≠ ∅ ↔ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ) ) |
| 23 | 19 21 | ineq12d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑣 = ( 𝑦 ∩ 𝐴 ) ) → ( 𝑢 ∩ 𝑣 ) = ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑦 ∩ 𝐴 ) ) ) |
| 24 | inindir | ⊢ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ( ( 𝑥 ∩ 𝐴 ) ∩ ( 𝑦 ∩ 𝐴 ) ) | |
| 25 | 23 24 | eqtr4di | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑣 = ( 𝑦 ∩ 𝐴 ) ) → ( 𝑢 ∩ 𝑣 ) = ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) ) |
| 26 | 25 | eqeq1d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑣 = ( 𝑦 ∩ 𝐴 ) ) → ( ( 𝑢 ∩ 𝑣 ) = ∅ ↔ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) ) |
| 27 | 20 22 26 | 3anbi123d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑣 = ( 𝑦 ∩ 𝐴 ) ) → ( ( 𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ↔ ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) ) ) |
| 28 | 19 21 | uneq12d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑣 = ( 𝑦 ∩ 𝐴 ) ) → ( 𝑢 ∪ 𝑣 ) = ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑦 ∩ 𝐴 ) ) ) |
| 29 | indir | ⊢ ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) = ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑦 ∩ 𝐴 ) ) | |
| 30 | 28 29 | eqtr4di | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑣 = ( 𝑦 ∩ 𝐴 ) ) → ( 𝑢 ∪ 𝑣 ) = ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ) |
| 31 | 30 | neeq1d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑣 = ( 𝑦 ∩ 𝐴 ) ) → ( ( 𝑢 ∪ 𝑣 ) ≠ 𝐴 ↔ ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) ) |
| 32 | 27 31 | imbi12d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑣 = ( 𝑦 ∩ 𝐴 ) ) → ( ( ( 𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ( 𝑢 ∪ 𝑣 ) ≠ 𝐴 ) ↔ ( ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) ) ) |
| 33 | 15 18 32 | ralxfr2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑢 = ( 𝑥 ∩ 𝐴 ) ) → ( ∀ 𝑣 ∈ ( 𝐽 ↾t 𝐴 ) ( ( 𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ( 𝑢 ∪ 𝑣 ) ≠ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐽 ( ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) ) ) |
| 34 | 6 12 33 | ralxfr2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ∀ 𝑢 ∈ ( 𝐽 ↾t 𝐴 ) ∀ 𝑣 ∈ ( 𝐽 ↾t 𝐴 ) ( ( 𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ( 𝑢 ∪ 𝑣 ) ≠ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) ) ) |
| 35 | 3 34 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) ) ) |