This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponent of a cyclic group is 0 if the group is infinite, otherwise it equals the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cyggex.o | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| Assertion | cyggex2 | ⊢ ( 𝐺 ∈ CycGrp → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cyggex.o | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } | |
| 5 | 1 3 4 | iscyg2 | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ) ) |
| 6 | n0 | ⊢ ( { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) | |
| 7 | ssrab2 | ⊢ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ⊆ 𝐵 | |
| 8 | simpr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) | |
| 9 | 7 8 | sselid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → 𝑦 ∈ 𝐵 ) |
| 10 | eqid | ⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) | |
| 11 | 1 3 4 10 | cyggenod2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
| 12 | 9 11 | jca | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
| 13 | 12 | ex | ⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } → ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) ) |
| 14 | 1 2 | gexcl | ⊢ ( 𝐺 ∈ Grp → 𝐸 ∈ ℕ0 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → 𝐸 ∈ ℕ0 ) |
| 16 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 18 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 19 | 18 | a1i | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) ∧ ¬ 𝐵 ∈ Fin ) → 0 ∈ ℕ0 ) |
| 20 | 17 19 | ifclda | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∈ ℕ0 ) |
| 21 | breq2 | ⊢ ( ( ♯ ‘ 𝐵 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) → ( 𝐸 ∥ ( ♯ ‘ 𝐵 ) ↔ 𝐸 ∥ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) | |
| 22 | breq2 | ⊢ ( 0 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) → ( 𝐸 ∥ 0 ↔ 𝐸 ∥ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) | |
| 23 | 1 2 | gexdvds3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → 𝐸 ∥ ( ♯ ‘ 𝐵 ) ) |
| 24 | 23 | adantlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) ∧ 𝐵 ∈ Fin ) → 𝐸 ∥ ( ♯ ‘ 𝐵 ) ) |
| 25 | 15 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) ∧ ¬ 𝐵 ∈ Fin ) → 𝐸 ∈ ℕ0 ) |
| 26 | nn0z | ⊢ ( 𝐸 ∈ ℕ0 → 𝐸 ∈ ℤ ) | |
| 27 | dvds0 | ⊢ ( 𝐸 ∈ ℤ → 𝐸 ∥ 0 ) | |
| 28 | 25 26 27 | 3syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) ∧ ¬ 𝐵 ∈ Fin ) → 𝐸 ∥ 0 ) |
| 29 | 21 22 24 28 | ifbothda | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → 𝐸 ∥ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
| 30 | simprr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) | |
| 31 | 1 2 10 | gexod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝐸 ) |
| 32 | 31 | adantrr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑦 ) ∥ 𝐸 ) |
| 33 | 30 32 | eqbrtrrd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∥ 𝐸 ) |
| 34 | dvdseq | ⊢ ( ( ( 𝐸 ∈ ℕ0 ∧ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∈ ℕ0 ) ∧ ( 𝐸 ∥ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∧ if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∥ 𝐸 ) ) → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) | |
| 35 | 15 20 29 33 34 | syl22anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
| 36 | 35 | ex | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑦 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑦 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
| 37 | 13 36 | syld | ⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
| 38 | 37 | exlimdv | ⊢ ( 𝐺 ∈ Grp → ( ∃ 𝑦 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
| 39 | 6 38 | biimtrid | ⊢ ( 𝐺 ∈ Grp → ( { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) ) |
| 40 | 39 | imp | ⊢ ( ( 𝐺 ∈ Grp ∧ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ) → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
| 41 | 5 40 | sylbi | ⊢ ( 𝐺 ∈ CycGrp → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |