This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an infinite cyclic group, the generator must have infinite order, but this property no longer characterizes the generators. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| iscyg3.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | ||
| cyggenod.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | cyggenod2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( 𝑂 ‘ 𝑋 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | iscyg3.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | |
| 4 | cyggenod.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 5 | 1 2 3 | iscyggen | ⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
| 6 | 5 | simplbi | ⊢ ( 𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐵 ) |
| 7 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) | |
| 8 | 1 4 2 7 | dfod2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ 𝑋 ) = if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) , 0 ) ) |
| 9 | 6 8 | sylan2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( 𝑂 ‘ 𝑋 ) = if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) , 0 ) ) |
| 10 | 5 | simprbi | ⊢ ( 𝑋 ∈ 𝐸 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) |
| 12 | 11 | eleq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin ↔ 𝐵 ∈ Fin ) ) |
| 13 | 11 | fveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) = ( ♯ ‘ 𝐵 ) ) |
| 14 | 12 13 | ifbieq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → if ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) , 0 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
| 15 | 9 14 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( 𝑂 ‘ 𝑋 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |