This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of nonnegative integer powers of an element A of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubmcmn.b | |- B = ( Base ` G ) |
|
| cycsubmcmn.t | |- .x. = ( .g ` G ) |
||
| cycsubmcmn.f | |- F = ( x e. NN0 |-> ( x .x. A ) ) |
||
| cycsubmcmn.c | |- C = ran F |
||
| Assertion | cycsubmcmn | |- ( ( G e. Mnd /\ A e. B ) -> ( G |`s C ) e. CMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubmcmn.b | |- B = ( Base ` G ) |
|
| 2 | cycsubmcmn.t | |- .x. = ( .g ` G ) |
|
| 3 | cycsubmcmn.f | |- F = ( x e. NN0 |-> ( x .x. A ) ) |
|
| 4 | cycsubmcmn.c | |- C = ran F |
|
| 5 | 1 2 3 4 | cycsubm | |- ( ( G e. Mnd /\ A e. B ) -> C e. ( SubMnd ` G ) ) |
| 6 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 7 | eqid | |- ( G |`s C ) = ( G |`s C ) |
|
| 8 | 1 6 7 | issubm2 | |- ( G e. Mnd -> ( C e. ( SubMnd ` G ) <-> ( C C_ B /\ ( 0g ` G ) e. C /\ ( G |`s C ) e. Mnd ) ) ) |
| 9 | 8 | adantr | |- ( ( G e. Mnd /\ A e. B ) -> ( C e. ( SubMnd ` G ) <-> ( C C_ B /\ ( 0g ` G ) e. C /\ ( G |`s C ) e. Mnd ) ) ) |
| 10 | simp3 | |- ( ( C C_ B /\ ( 0g ` G ) e. C /\ ( G |`s C ) e. Mnd ) -> ( G |`s C ) e. Mnd ) |
|
| 11 | 9 10 | biimtrdi | |- ( ( G e. Mnd /\ A e. B ) -> ( C e. ( SubMnd ` G ) -> ( G |`s C ) e. Mnd ) ) |
| 12 | 5 11 | mpd | |- ( ( G e. Mnd /\ A e. B ) -> ( G |`s C ) e. Mnd ) |
| 13 | 7 | submbas | |- ( C e. ( SubMnd ` G ) -> C = ( Base ` ( G |`s C ) ) ) |
| 14 | 5 13 | syl | |- ( ( G e. Mnd /\ A e. B ) -> C = ( Base ` ( G |`s C ) ) ) |
| 15 | 14 | eqcomd | |- ( ( G e. Mnd /\ A e. B ) -> ( Base ` ( G |`s C ) ) = C ) |
| 16 | 15 | eleq2d | |- ( ( G e. Mnd /\ A e. B ) -> ( x e. ( Base ` ( G |`s C ) ) <-> x e. C ) ) |
| 17 | 15 | eleq2d | |- ( ( G e. Mnd /\ A e. B ) -> ( y e. ( Base ` ( G |`s C ) ) <-> y e. C ) ) |
| 18 | 16 17 | anbi12d | |- ( ( G e. Mnd /\ A e. B ) -> ( ( x e. ( Base ` ( G |`s C ) ) /\ y e. ( Base ` ( G |`s C ) ) ) <-> ( x e. C /\ y e. C ) ) ) |
| 19 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 20 | 1 2 3 4 19 | cycsubmcom | |- ( ( ( G e. Mnd /\ A e. B ) /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 21 | 5 | adantr | |- ( ( ( G e. Mnd /\ A e. B ) /\ ( x e. C /\ y e. C ) ) -> C e. ( SubMnd ` G ) ) |
| 22 | 7 19 | ressplusg | |- ( C e. ( SubMnd ` G ) -> ( +g ` G ) = ( +g ` ( G |`s C ) ) ) |
| 23 | 22 | eqcomd | |- ( C e. ( SubMnd ` G ) -> ( +g ` ( G |`s C ) ) = ( +g ` G ) ) |
| 24 | 23 | oveqd | |- ( C e. ( SubMnd ` G ) -> ( x ( +g ` ( G |`s C ) ) y ) = ( x ( +g ` G ) y ) ) |
| 25 | 23 | oveqd | |- ( C e. ( SubMnd ` G ) -> ( y ( +g ` ( G |`s C ) ) x ) = ( y ( +g ` G ) x ) ) |
| 26 | 24 25 | eqeq12d | |- ( C e. ( SubMnd ` G ) -> ( ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) <-> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) |
| 27 | 21 26 | syl | |- ( ( ( G e. Mnd /\ A e. B ) /\ ( x e. C /\ y e. C ) ) -> ( ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) <-> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) |
| 28 | 20 27 | mpbird | |- ( ( ( G e. Mnd /\ A e. B ) /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) |
| 29 | 28 | ex | |- ( ( G e. Mnd /\ A e. B ) -> ( ( x e. C /\ y e. C ) -> ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) ) |
| 30 | 18 29 | sylbid | |- ( ( G e. Mnd /\ A e. B ) -> ( ( x e. ( Base ` ( G |`s C ) ) /\ y e. ( Base ` ( G |`s C ) ) ) -> ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) ) |
| 31 | 30 | ralrimivv | |- ( ( G e. Mnd /\ A e. B ) -> A. x e. ( Base ` ( G |`s C ) ) A. y e. ( Base ` ( G |`s C ) ) ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) |
| 32 | eqid | |- ( Base ` ( G |`s C ) ) = ( Base ` ( G |`s C ) ) |
|
| 33 | eqid | |- ( +g ` ( G |`s C ) ) = ( +g ` ( G |`s C ) ) |
|
| 34 | 32 33 | iscmn | |- ( ( G |`s C ) e. CMnd <-> ( ( G |`s C ) e. Mnd /\ A. x e. ( Base ` ( G |`s C ) ) A. y e. ( Base ` ( G |`s C ) ) ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) ) |
| 35 | 12 31 34 | sylanbrc | |- ( ( G e. Mnd /\ A e. B ) -> ( G |`s C ) e. CMnd ) |