This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of nonnegative integer powers of an element A of a monoid forms a submonoid containing A (see cycsubmcl ), called the cyclic monoid generated by the element A . This corresponds to the statement in Lang p. 6. (Contributed by AV, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cycsubm.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cycsubm.f | ⊢ 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) ) | ||
| cycsubm.c | ⊢ 𝐶 = ran 𝐹 | ||
| Assertion | cycsubm | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → 𝐶 ∈ ( SubMnd ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cycsubm.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | cycsubm.f | ⊢ 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) ) | |
| 4 | cycsubm.c | ⊢ 𝐶 = ran 𝐹 | |
| 5 | 1 2 | mulgnn0cl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 · 𝐴 ) ∈ 𝐵 ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 · 𝐴 ) ∈ 𝐵 ) |
| 7 | 6 | an32s | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 · 𝐴 ) ∈ 𝐵 ) |
| 8 | 7 3 | fmptd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → 𝐹 : ℕ0 ⟶ 𝐵 ) |
| 9 | 8 | frnd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ran 𝐹 ⊆ 𝐵 ) |
| 10 | 4 9 | eqsstrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
| 11 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 12 | 11 | a1i | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → 0 ∈ ℕ0 ) |
| 13 | oveq1 | ⊢ ( 𝑖 = 0 → ( 𝑖 · 𝐴 ) = ( 0 · 𝐴 ) ) | |
| 14 | 13 | eqeq2d | ⊢ ( 𝑖 = 0 → ( ( 0g ‘ 𝐺 ) = ( 𝑖 · 𝐴 ) ↔ ( 0g ‘ 𝐺 ) = ( 0 · 𝐴 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 = 0 ) → ( ( 0g ‘ 𝐺 ) = ( 𝑖 · 𝐴 ) ↔ ( 0g ‘ 𝐺 ) = ( 0 · 𝐴 ) ) ) |
| 16 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 17 | 1 16 2 | mulg0 | ⊢ ( 𝐴 ∈ 𝐵 → ( 0 · 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 0 · 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 19 | 18 | eqcomd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = ( 0 · 𝐴 ) ) |
| 20 | 12 15 19 | rspcedvd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑖 ∈ ℕ0 ( 0g ‘ 𝐺 ) = ( 𝑖 · 𝐴 ) ) |
| 21 | 1 2 3 4 | cycsubmel | ⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝐶 ↔ ∃ 𝑖 ∈ ℕ0 ( 0g ‘ 𝐺 ) = ( 𝑖 · 𝐴 ) ) |
| 22 | 20 21 | sylibr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) ∈ 𝐶 ) |
| 23 | simplr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) | |
| 24 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) | |
| 25 | 23 24 | nn0addcld | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝑖 + 𝑗 ) ∈ ℕ0 ) |
| 26 | 25 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝑏 = ( 𝑗 · 𝐴 ) ∧ 𝑎 = ( 𝑖 · 𝐴 ) ) ) → ( 𝑖 + 𝑗 ) ∈ ℕ0 ) |
| 27 | oveq1 | ⊢ ( 𝑘 = ( 𝑖 + 𝑗 ) → ( 𝑘 · 𝐴 ) = ( ( 𝑖 + 𝑗 ) · 𝐴 ) ) | |
| 28 | 27 | eqeq2d | ⊢ ( 𝑘 = ( 𝑖 + 𝑗 ) → ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑘 · 𝐴 ) ↔ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( ( 𝑖 + 𝑗 ) · 𝐴 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝑏 = ( 𝑗 · 𝐴 ) ∧ 𝑎 = ( 𝑖 · 𝐴 ) ) ) ∧ 𝑘 = ( 𝑖 + 𝑗 ) ) → ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑘 · 𝐴 ) ↔ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( ( 𝑖 + 𝑗 ) · 𝐴 ) ) ) |
| 30 | oveq12 | ⊢ ( ( 𝑎 = ( 𝑖 · 𝐴 ) ∧ 𝑏 = ( 𝑗 · 𝐴 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( ( 𝑖 · 𝐴 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝐴 ) ) ) | |
| 31 | 30 | ancoms | ⊢ ( ( 𝑏 = ( 𝑗 · 𝐴 ) ∧ 𝑎 = ( 𝑖 · 𝐴 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( ( 𝑖 · 𝐴 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝐴 ) ) ) |
| 32 | simplll | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) | |
| 33 | simpllr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ 𝐵 ) | |
| 34 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 35 | 1 2 34 | mulgnn0dir | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑖 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) ) → ( ( 𝑖 + 𝑗 ) · 𝐴 ) = ( ( 𝑖 · 𝐴 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝐴 ) ) ) |
| 36 | 32 23 24 33 35 | syl13anc | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑖 + 𝑗 ) · 𝐴 ) = ( ( 𝑖 · 𝐴 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝐴 ) ) ) |
| 37 | 36 | eqcomd | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑖 · 𝐴 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝐴 ) ) = ( ( 𝑖 + 𝑗 ) · 𝐴 ) ) |
| 38 | 31 37 | sylan9eqr | ⊢ ( ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝑏 = ( 𝑗 · 𝐴 ) ∧ 𝑎 = ( 𝑖 · 𝐴 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( ( 𝑖 + 𝑗 ) · 𝐴 ) ) |
| 39 | 26 29 38 | rspcedvd | ⊢ ( ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝑏 = ( 𝑗 · 𝐴 ) ∧ 𝑎 = ( 𝑖 · 𝐴 ) ) ) → ∃ 𝑘 ∈ ℕ0 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑘 · 𝐴 ) ) |
| 40 | 39 | exp32 | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝑏 = ( 𝑗 · 𝐴 ) → ( 𝑎 = ( 𝑖 · 𝐴 ) → ∃ 𝑘 ∈ ℕ0 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑘 · 𝐴 ) ) ) ) |
| 41 | 40 | rexlimdva | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) → ( ∃ 𝑗 ∈ ℕ0 𝑏 = ( 𝑗 · 𝐴 ) → ( 𝑎 = ( 𝑖 · 𝐴 ) → ∃ 𝑘 ∈ ℕ0 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑘 · 𝐴 ) ) ) ) |
| 42 | 41 | com23 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑎 = ( 𝑖 · 𝐴 ) → ( ∃ 𝑗 ∈ ℕ0 𝑏 = ( 𝑗 · 𝐴 ) → ∃ 𝑘 ∈ ℕ0 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑘 · 𝐴 ) ) ) ) |
| 43 | 42 | rexlimdva | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( ∃ 𝑖 ∈ ℕ0 𝑎 = ( 𝑖 · 𝐴 ) → ( ∃ 𝑗 ∈ ℕ0 𝑏 = ( 𝑗 · 𝐴 ) → ∃ 𝑘 ∈ ℕ0 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑘 · 𝐴 ) ) ) ) |
| 44 | 43 | impd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( ( ∃ 𝑖 ∈ ℕ0 𝑎 = ( 𝑖 · 𝐴 ) ∧ ∃ 𝑗 ∈ ℕ0 𝑏 = ( 𝑗 · 𝐴 ) ) → ∃ 𝑘 ∈ ℕ0 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑘 · 𝐴 ) ) ) |
| 45 | 1 2 3 4 | cycsubmel | ⊢ ( 𝑎 ∈ 𝐶 ↔ ∃ 𝑖 ∈ ℕ0 𝑎 = ( 𝑖 · 𝐴 ) ) |
| 46 | 1 2 3 4 | cycsubmel | ⊢ ( 𝑏 ∈ 𝐶 ↔ ∃ 𝑗 ∈ ℕ0 𝑏 = ( 𝑗 · 𝐴 ) ) |
| 47 | 45 46 | anbi12i | ⊢ ( ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ↔ ( ∃ 𝑖 ∈ ℕ0 𝑎 = ( 𝑖 · 𝐴 ) ∧ ∃ 𝑗 ∈ ℕ0 𝑏 = ( 𝑗 · 𝐴 ) ) ) |
| 48 | 1 2 3 4 | cycsubmel | ⊢ ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐶 ↔ ∃ 𝑘 ∈ ℕ0 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑘 · 𝐴 ) ) |
| 49 | 44 47 48 | 3imtr4g | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐶 ) ) |
| 50 | 49 | ralrimivv | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐶 ) |
| 51 | 1 16 34 | issubm | ⊢ ( 𝐺 ∈ Mnd → ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝐶 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝐶 ∧ ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐶 ) ) ) |
| 52 | 51 | adantr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝐶 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝐶 ∧ ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝐶 ) ) ) |
| 53 | 10 22 50 52 | mpbir3and | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → 𝐶 ∈ ( SubMnd ‘ 𝐺 ) ) |