This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscmn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| iscmn.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | iscmn | ⊢ ( 𝐺 ∈ CMnd ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | iscmn.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) | |
| 4 | 3 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
| 5 | raleq | ⊢ ( ( Base ‘ 𝑔 ) = 𝐵 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ) ) | |
| 6 | 5 | raleqbi1dv | ⊢ ( ( Base ‘ 𝑔 ) = 𝐵 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∀ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∀ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ) ) |
| 8 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) | |
| 9 | 8 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = + ) |
| 10 | 9 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 11 | 9 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) = ( 𝑦 + 𝑥 ) ) |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ↔ ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 13 | 12 | 2ralbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 14 | 7 13 | bitrd | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∀ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 15 | df-cmn | ⊢ CMnd = { 𝑔 ∈ Mnd ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∀ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) } | |
| 16 | 14 15 | elrab2 | ⊢ ( 𝐺 ∈ CMnd ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |