This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation of a monoid is commutative over the set of nonnegative integer powers of an element A of the monoid. (Contributed by AV, 20-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubmcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cycsubmcom.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cycsubmcom.f | ⊢ 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) ) | ||
| cycsubmcom.c | ⊢ 𝐶 = ran 𝐹 | ||
| cycsubmcom.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | cycsubmcom | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubmcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cycsubmcom.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | cycsubmcom.f | ⊢ 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) ) | |
| 4 | cycsubmcom.c | ⊢ 𝐶 = ran 𝐹 | |
| 5 | cycsubmcom.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 6 | 1 2 3 4 | cycsubmel | ⊢ ( 𝑐 ∈ 𝐶 ↔ ∃ 𝑖 ∈ ℕ0 𝑐 = ( 𝑖 · 𝐴 ) ) |
| 7 | 6 | biimpi | ⊢ ( 𝑐 ∈ 𝐶 → ∃ 𝑖 ∈ ℕ0 𝑐 = ( 𝑖 · 𝐴 ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ 𝑐 ∈ 𝐶 ) → ∃ 𝑖 ∈ ℕ0 𝑐 = ( 𝑖 · 𝐴 ) ) |
| 9 | 8 | ralrimiva | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ∀ 𝑐 ∈ 𝐶 ∃ 𝑖 ∈ ℕ0 𝑐 = ( 𝑖 · 𝐴 ) ) |
| 10 | simplll | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → 𝐺 ∈ Mnd ) | |
| 11 | simprl | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → 𝑚 ∈ ℕ0 ) | |
| 12 | simprr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → 𝑛 ∈ ℕ0 ) | |
| 13 | simpllr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → 𝐴 ∈ 𝐵 ) | |
| 14 | 1 2 5 | mulgnn0dir | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) ) → ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
| 15 | 10 11 12 13 14 | syl13anc | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
| 16 | 15 | ralrimivva | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ∀ 𝑚 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
| 17 | simprl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐶 ) | |
| 18 | simprr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → 𝑌 ∈ 𝐶 ) | |
| 19 | nn0sscn | ⊢ ℕ0 ⊆ ℂ | |
| 20 | 19 | a1i | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ℕ0 ⊆ ℂ ) |
| 21 | 9 16 17 18 20 | cyccom | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |