This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxplt2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) < ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxple2 | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) | |
| 2 | 1 | 3com12 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( ¬ 𝐵 ≤ 𝐴 ↔ ¬ ( 𝐵 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 4 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) | |
| 5 | simp2l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) | |
| 6 | 4 5 | ltnled | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
| 7 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 0 ≤ 𝐴 ) | |
| 8 | rpre | ⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ ) | |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
| 10 | recxpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ ) | |
| 11 | 4 7 9 10 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ ) |
| 12 | simp2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 0 ≤ 𝐵 ) | |
| 13 | recxpcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ↑𝑐 𝐶 ) ∈ ℝ ) | |
| 14 | 5 12 9 13 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ↑𝑐 𝐶 ) ∈ ℝ ) |
| 15 | 11 14 | ltnled | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ↑𝑐 𝐶 ) < ( 𝐵 ↑𝑐 𝐶 ) ↔ ¬ ( 𝐵 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 16 | 3 6 15 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) < ( 𝐵 ↑𝑐 𝐶 ) ) ) |