This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 5 | elrp | ⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) | |
| 6 | rpcxpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ+ ) | |
| 7 | 6 | rpge0d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) |
| 8 | 7 | ex | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐵 ∈ ℝ → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 9 | 5 8 | sylbir | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐵 ∈ ℝ → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 10 | 9 | impancom | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 11 | 0le1 | ⊢ 0 ≤ 1 | |
| 12 | 0cn | ⊢ 0 ∈ ℂ | |
| 13 | cxp0 | ⊢ ( 0 ∈ ℂ → ( 0 ↑𝑐 0 ) = 1 ) | |
| 14 | 12 13 | ax-mp | ⊢ ( 0 ↑𝑐 0 ) = 1 |
| 15 | 11 14 | breqtrri | ⊢ 0 ≤ ( 0 ↑𝑐 0 ) |
| 16 | simpr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 = 0 ) → 𝐵 = 0 ) | |
| 17 | 16 | oveq2d | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 = 0 ) → ( 0 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 0 ) ) |
| 18 | 15 17 | breqtrrid | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 = 0 ) → 0 ≤ ( 0 ↑𝑐 𝐵 ) ) |
| 19 | 0le0 | ⊢ 0 ≤ 0 | |
| 20 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 21 | 0cxp | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) | |
| 22 | 20 21 | sylan | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) |
| 23 | 19 22 | breqtrrid | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 0 ≤ ( 0 ↑𝑐 𝐵 ) ) |
| 24 | 18 23 | pm2.61dane | ⊢ ( 𝐵 ∈ ℝ → 0 ≤ ( 0 ↑𝑐 𝐵 ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 0 ↑𝑐 𝐵 ) ) |
| 26 | oveq1 | ⊢ ( 0 = 𝐴 → ( 0 ↑𝑐 𝐵 ) = ( 𝐴 ↑𝑐 𝐵 ) ) | |
| 27 | 26 | breq2d | ⊢ ( 0 = 𝐴 → ( 0 ≤ ( 0 ↑𝑐 𝐵 ) ↔ 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 28 | 25 27 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 = 𝐴 → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 29 | 10 28 | jaod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 30 | 4 29 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐴 → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 31 | 30 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) |
| 32 | 31 | 3com23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 𝐴 ↑𝑐 𝐵 ) ) |