This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A C^n function is continuous. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cpncn | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝑆 ⊆ ℂ ) |
| 3 | simpl | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) | |
| 4 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 5 | 4 | a1i | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 0 ∈ ℕ0 ) |
| 6 | elfvdm | ⊢ ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) → 𝑁 ∈ dom ( 𝓑C𝑛 ‘ 𝑆 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝑁 ∈ dom ( 𝓑C𝑛 ‘ 𝑆 ) ) |
| 8 | fncpn | ⊢ ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛 ‘ 𝑆 ) Fn ℕ0 ) | |
| 9 | fndm | ⊢ ( ( 𝓑C𝑛 ‘ 𝑆 ) Fn ℕ0 → dom ( 𝓑C𝑛 ‘ 𝑆 ) = ℕ0 ) | |
| 10 | 2 8 9 | 3syl | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → dom ( 𝓑C𝑛 ‘ 𝑆 ) = ℕ0 ) |
| 11 | 7 10 | eleqtrd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
| 12 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 13 | 11 12 | eleqtrdi | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 14 | cpnord | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 0 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ) | |
| 15 | 3 5 13 14 | syl3anc | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ) |
| 16 | simpr | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) | |
| 17 | 15 16 | sseldd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ) |
| 18 | elcpn | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) | |
| 19 | 2 5 18 | syl2anc | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 0 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) |
| 20 | 17 19 | mpbid | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) |
| 21 | 20 | simpld | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 22 | dvn0 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) | |
| 23 | 2 21 22 | syl2anc | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
| 24 | 20 | simprd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) |
| 25 | 23 24 | eqeltrrd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) → 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) ) |