This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move scalar multiplication to outside of inner product. See his35 . (Contributed by Mario Carneiro, 17-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | |- ., = ( .i ` W ) |
|
| cphipcj.v | |- V = ( Base ` W ) |
||
| cphass.f | |- F = ( Scalar ` W ) |
||
| cphass.k | |- K = ( Base ` F ) |
||
| cphass.s | |- .x. = ( .s ` W ) |
||
| Assertion | cph2ass | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> ( ( A .x. C ) ., ( B .x. D ) ) = ( ( A x. ( * ` B ) ) x. ( C ., D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | |- ., = ( .i ` W ) |
|
| 2 | cphipcj.v | |- V = ( Base ` W ) |
|
| 3 | cphass.f | |- F = ( Scalar ` W ) |
|
| 4 | cphass.k | |- K = ( Base ` F ) |
|
| 5 | cphass.s | |- .x. = ( .s ` W ) |
|
| 6 | simp1 | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> W e. CPreHil ) |
|
| 7 | simp2r | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> B e. K ) |
|
| 8 | simp3l | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> C e. V ) |
|
| 9 | simp3r | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> D e. V ) |
|
| 10 | 1 2 3 4 5 | cphassr | |- ( ( W e. CPreHil /\ ( B e. K /\ C e. V /\ D e. V ) ) -> ( C ., ( B .x. D ) ) = ( ( * ` B ) x. ( C ., D ) ) ) |
| 11 | 6 7 8 9 10 | syl13anc | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> ( C ., ( B .x. D ) ) = ( ( * ` B ) x. ( C ., D ) ) ) |
| 12 | 11 | oveq2d | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> ( A x. ( C ., ( B .x. D ) ) ) = ( A x. ( ( * ` B ) x. ( C ., D ) ) ) ) |
| 13 | simp2l | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> A e. K ) |
|
| 14 | cphlmod | |- ( W e. CPreHil -> W e. LMod ) |
|
| 15 | 14 | 3ad2ant1 | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> W e. LMod ) |
| 16 | 2 3 5 4 | lmodvscl | |- ( ( W e. LMod /\ B e. K /\ D e. V ) -> ( B .x. D ) e. V ) |
| 17 | 15 7 9 16 | syl3anc | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> ( B .x. D ) e. V ) |
| 18 | 1 2 3 4 5 | cphass | |- ( ( W e. CPreHil /\ ( A e. K /\ C e. V /\ ( B .x. D ) e. V ) ) -> ( ( A .x. C ) ., ( B .x. D ) ) = ( A x. ( C ., ( B .x. D ) ) ) ) |
| 19 | 6 13 8 17 18 | syl13anc | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> ( ( A .x. C ) ., ( B .x. D ) ) = ( A x. ( C ., ( B .x. D ) ) ) ) |
| 20 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 21 | 20 | 3ad2ant1 | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> W e. CMod ) |
| 22 | 3 4 | clmsscn | |- ( W e. CMod -> K C_ CC ) |
| 23 | 21 22 | syl | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> K C_ CC ) |
| 24 | 23 13 | sseldd | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> A e. CC ) |
| 25 | 23 7 | sseldd | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> B e. CC ) |
| 26 | 25 | cjcld | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> ( * ` B ) e. CC ) |
| 27 | 2 1 | cphipcl | |- ( ( W e. CPreHil /\ C e. V /\ D e. V ) -> ( C ., D ) e. CC ) |
| 28 | 27 | 3expb | |- ( ( W e. CPreHil /\ ( C e. V /\ D e. V ) ) -> ( C ., D ) e. CC ) |
| 29 | 28 | 3adant2 | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> ( C ., D ) e. CC ) |
| 30 | 24 26 29 | mulassd | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> ( ( A x. ( * ` B ) ) x. ( C ., D ) ) = ( A x. ( ( * ` B ) x. ( C ., D ) ) ) ) |
| 31 | 12 19 30 | 3eqtr4d | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K ) /\ ( C e. V /\ D e. V ) ) -> ( ( A .x. C ) ., ( B .x. D ) ) = ( ( A x. ( * ` B ) ) x. ( C ., D ) ) ) |