This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Location of the zeroes of cosine in ( -upi (,] pi ) . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coseq0negpitopi | |- ( A e. ( -u _pi (,] _pi ) -> ( ( cos ` A ) = 0 <-> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> A e. ( -u _pi (,] _pi ) ) |
|
| 2 | pire | |- _pi e. RR |
|
| 3 | 2 | renegcli | |- -u _pi e. RR |
| 4 | 3 | rexri | |- -u _pi e. RR* |
| 5 | elioc2 | |- ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( A e. ( -u _pi (,] _pi ) <-> ( A e. RR /\ -u _pi < A /\ A <_ _pi ) ) ) |
|
| 6 | 4 2 5 | mp2an | |- ( A e. ( -u _pi (,] _pi ) <-> ( A e. RR /\ -u _pi < A /\ A <_ _pi ) ) |
| 7 | 1 6 | sylib | |- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> ( A e. RR /\ -u _pi < A /\ A <_ _pi ) ) |
| 8 | 7 | simp1d | |- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> A e. RR ) |
| 9 | 0re | |- 0 e. RR |
|
| 10 | 9 | a1i | |- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> 0 e. RR ) |
| 11 | 8 | adantr | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> A e. RR ) |
| 12 | 11 | recnd | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> A e. CC ) |
| 13 | 8 | recnd | |- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> A e. CC ) |
| 14 | 13 | adantr | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> A e. CC ) |
| 15 | cosneg | |- ( A e. CC -> ( cos ` -u A ) = ( cos ` A ) ) |
|
| 16 | 14 15 | syl | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> ( cos ` -u A ) = ( cos ` A ) ) |
| 17 | simplr | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> ( cos ` A ) = 0 ) |
|
| 18 | 16 17 | eqtrd | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> ( cos ` -u A ) = 0 ) |
| 19 | 8 | renegcld | |- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> -u A e. RR ) |
| 20 | 19 | adantr | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> -u A e. RR ) |
| 21 | simpr | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> A <_ 0 ) |
|
| 22 | 11 | le0neg1d | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> ( A <_ 0 <-> 0 <_ -u A ) ) |
| 23 | 21 22 | mpbid | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> 0 <_ -u A ) |
| 24 | 2 | a1i | |- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> _pi e. RR ) |
| 25 | 7 | simp2d | |- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> -u _pi < A ) |
| 26 | 24 8 25 | ltnegcon1d | |- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> -u A < _pi ) |
| 27 | 19 24 26 | ltled | |- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> -u A <_ _pi ) |
| 28 | 27 | adantr | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> -u A <_ _pi ) |
| 29 | 9 2 | elicc2i | |- ( -u A e. ( 0 [,] _pi ) <-> ( -u A e. RR /\ 0 <_ -u A /\ -u A <_ _pi ) ) |
| 30 | 20 23 28 29 | syl3anbrc | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> -u A e. ( 0 [,] _pi ) ) |
| 31 | coseq00topi | |- ( -u A e. ( 0 [,] _pi ) -> ( ( cos ` -u A ) = 0 <-> -u A = ( _pi / 2 ) ) ) |
|
| 32 | 30 31 | syl | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> ( ( cos ` -u A ) = 0 <-> -u A = ( _pi / 2 ) ) ) |
| 33 | 18 32 | mpbid | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> -u A = ( _pi / 2 ) ) |
| 34 | 12 33 | negcon1ad | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> -u ( _pi / 2 ) = A ) |
| 35 | 34 | eqcomd | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> A = -u ( _pi / 2 ) ) |
| 36 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 37 | 36 | renegcli | |- -u ( _pi / 2 ) e. RR |
| 38 | prid2g | |- ( -u ( _pi / 2 ) e. RR -> -u ( _pi / 2 ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
|
| 39 | eleq1a | |- ( -u ( _pi / 2 ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } -> ( A = -u ( _pi / 2 ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) ) |
|
| 40 | 37 38 39 | mp2b | |- ( A = -u ( _pi / 2 ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 41 | 35 40 | syl | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 42 | simplr | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> ( cos ` A ) = 0 ) |
|
| 43 | 8 | adantr | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> A e. RR ) |
| 44 | simpr | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> 0 <_ A ) |
|
| 45 | 7 | simp3d | |- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> A <_ _pi ) |
| 46 | 45 | adantr | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> A <_ _pi ) |
| 47 | 9 2 | elicc2i | |- ( A e. ( 0 [,] _pi ) <-> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) |
| 48 | 43 44 46 47 | syl3anbrc | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> A e. ( 0 [,] _pi ) ) |
| 49 | coseq00topi | |- ( A e. ( 0 [,] _pi ) -> ( ( cos ` A ) = 0 <-> A = ( _pi / 2 ) ) ) |
|
| 50 | 48 49 | syl | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> ( ( cos ` A ) = 0 <-> A = ( _pi / 2 ) ) ) |
| 51 | 42 50 | mpbid | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> A = ( _pi / 2 ) ) |
| 52 | prid1g | |- ( ( _pi / 2 ) e. RR -> ( _pi / 2 ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
|
| 53 | eleq1a | |- ( ( _pi / 2 ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } -> ( A = ( _pi / 2 ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) ) |
|
| 54 | 36 52 53 | mp2b | |- ( A = ( _pi / 2 ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 55 | 51 54 | syl | |- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 56 | 8 10 41 55 | lecasei | |- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 57 | elpri | |- ( A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } -> ( A = ( _pi / 2 ) \/ A = -u ( _pi / 2 ) ) ) |
|
| 58 | fveq2 | |- ( A = ( _pi / 2 ) -> ( cos ` A ) = ( cos ` ( _pi / 2 ) ) ) |
|
| 59 | coshalfpi | |- ( cos ` ( _pi / 2 ) ) = 0 |
|
| 60 | 58 59 | eqtrdi | |- ( A = ( _pi / 2 ) -> ( cos ` A ) = 0 ) |
| 61 | fveq2 | |- ( A = -u ( _pi / 2 ) -> ( cos ` A ) = ( cos ` -u ( _pi / 2 ) ) ) |
|
| 62 | cosneghalfpi | |- ( cos ` -u ( _pi / 2 ) ) = 0 |
|
| 63 | 61 62 | eqtrdi | |- ( A = -u ( _pi / 2 ) -> ( cos ` A ) = 0 ) |
| 64 | 60 63 | jaoi | |- ( ( A = ( _pi / 2 ) \/ A = -u ( _pi / 2 ) ) -> ( cos ` A ) = 0 ) |
| 65 | 57 64 | syl | |- ( A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } -> ( cos ` A ) = 0 ) |
| 66 | 65 | adantl | |- ( ( A e. ( -u _pi (,] _pi ) /\ A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) -> ( cos ` A ) = 0 ) |
| 67 | 56 66 | impbida | |- ( A e. ( -u _pi (,] _pi ) -> ( ( cos ` A ) = 0 <-> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) ) |