This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos2bnd | ⊢ ( - ( 7 / 9 ) < ( cos ‘ 2 ) ∧ ( cos ‘ 2 ) < - ( 1 / 9 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7cn | ⊢ 7 ∈ ℂ | |
| 2 | 9cn | ⊢ 9 ∈ ℂ | |
| 3 | 9re | ⊢ 9 ∈ ℝ | |
| 4 | 9pos | ⊢ 0 < 9 | |
| 5 | 3 4 | gt0ne0ii | ⊢ 9 ≠ 0 |
| 6 | divneg | ⊢ ( ( 7 ∈ ℂ ∧ 9 ∈ ℂ ∧ 9 ≠ 0 ) → - ( 7 / 9 ) = ( - 7 / 9 ) ) | |
| 7 | 1 2 5 6 | mp3an | ⊢ - ( 7 / 9 ) = ( - 7 / 9 ) |
| 8 | 2cn | ⊢ 2 ∈ ℂ | |
| 9 | 2 5 | pm3.2i | ⊢ ( 9 ∈ ℂ ∧ 9 ≠ 0 ) |
| 10 | divsubdir | ⊢ ( ( 2 ∈ ℂ ∧ 9 ∈ ℂ ∧ ( 9 ∈ ℂ ∧ 9 ≠ 0 ) ) → ( ( 2 − 9 ) / 9 ) = ( ( 2 / 9 ) − ( 9 / 9 ) ) ) | |
| 11 | 8 2 9 10 | mp3an | ⊢ ( ( 2 − 9 ) / 9 ) = ( ( 2 / 9 ) − ( 9 / 9 ) ) |
| 12 | 2 8 | negsubdi2i | ⊢ - ( 9 − 2 ) = ( 2 − 9 ) |
| 13 | 7p2e9 | ⊢ ( 7 + 2 ) = 9 | |
| 14 | 2 8 1 | subadd2i | ⊢ ( ( 9 − 2 ) = 7 ↔ ( 7 + 2 ) = 9 ) |
| 15 | 13 14 | mpbir | ⊢ ( 9 − 2 ) = 7 |
| 16 | 15 | negeqi | ⊢ - ( 9 − 2 ) = - 7 |
| 17 | 12 16 | eqtr3i | ⊢ ( 2 − 9 ) = - 7 |
| 18 | 17 | oveq1i | ⊢ ( ( 2 − 9 ) / 9 ) = ( - 7 / 9 ) |
| 19 | 11 18 | eqtr3i | ⊢ ( ( 2 / 9 ) − ( 9 / 9 ) ) = ( - 7 / 9 ) |
| 20 | 2 5 | dividi | ⊢ ( 9 / 9 ) = 1 |
| 21 | 20 | oveq2i | ⊢ ( ( 2 / 9 ) − ( 9 / 9 ) ) = ( ( 2 / 9 ) − 1 ) |
| 22 | 7 19 21 | 3eqtr2ri | ⊢ ( ( 2 / 9 ) − 1 ) = - ( 7 / 9 ) |
| 23 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 24 | 8 23 2 5 | divassi | ⊢ ( ( 2 · 1 ) / 9 ) = ( 2 · ( 1 / 9 ) ) |
| 25 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 26 | 25 | oveq1i | ⊢ ( ( 2 · 1 ) / 9 ) = ( 2 / 9 ) |
| 27 | 24 26 | eqtr3i | ⊢ ( 2 · ( 1 / 9 ) ) = ( 2 / 9 ) |
| 28 | 3cn | ⊢ 3 ∈ ℂ | |
| 29 | 3ne0 | ⊢ 3 ≠ 0 | |
| 30 | 23 28 29 | sqdivi | ⊢ ( ( 1 / 3 ) ↑ 2 ) = ( ( 1 ↑ 2 ) / ( 3 ↑ 2 ) ) |
| 31 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 32 | sq3 | ⊢ ( 3 ↑ 2 ) = 9 | |
| 33 | 31 32 | oveq12i | ⊢ ( ( 1 ↑ 2 ) / ( 3 ↑ 2 ) ) = ( 1 / 9 ) |
| 34 | 30 33 | eqtri | ⊢ ( ( 1 / 3 ) ↑ 2 ) = ( 1 / 9 ) |
| 35 | cos1bnd | ⊢ ( ( 1 / 3 ) < ( cos ‘ 1 ) ∧ ( cos ‘ 1 ) < ( 2 / 3 ) ) | |
| 36 | 35 | simpli | ⊢ ( 1 / 3 ) < ( cos ‘ 1 ) |
| 37 | 0le1 | ⊢ 0 ≤ 1 | |
| 38 | 3pos | ⊢ 0 < 3 | |
| 39 | 1re | ⊢ 1 ∈ ℝ | |
| 40 | 3re | ⊢ 3 ∈ ℝ | |
| 41 | 39 40 | divge0i | ⊢ ( ( 0 ≤ 1 ∧ 0 < 3 ) → 0 ≤ ( 1 / 3 ) ) |
| 42 | 37 38 41 | mp2an | ⊢ 0 ≤ ( 1 / 3 ) |
| 43 | 0re | ⊢ 0 ∈ ℝ | |
| 44 | recoscl | ⊢ ( 1 ∈ ℝ → ( cos ‘ 1 ) ∈ ℝ ) | |
| 45 | 39 44 | ax-mp | ⊢ ( cos ‘ 1 ) ∈ ℝ |
| 46 | 40 29 | rereccli | ⊢ ( 1 / 3 ) ∈ ℝ |
| 47 | 43 46 45 | lelttri | ⊢ ( ( 0 ≤ ( 1 / 3 ) ∧ ( 1 / 3 ) < ( cos ‘ 1 ) ) → 0 < ( cos ‘ 1 ) ) |
| 48 | 42 36 47 | mp2an | ⊢ 0 < ( cos ‘ 1 ) |
| 49 | 43 45 48 | ltleii | ⊢ 0 ≤ ( cos ‘ 1 ) |
| 50 | 46 45 | lt2sqi | ⊢ ( ( 0 ≤ ( 1 / 3 ) ∧ 0 ≤ ( cos ‘ 1 ) ) → ( ( 1 / 3 ) < ( cos ‘ 1 ) ↔ ( ( 1 / 3 ) ↑ 2 ) < ( ( cos ‘ 1 ) ↑ 2 ) ) ) |
| 51 | 42 49 50 | mp2an | ⊢ ( ( 1 / 3 ) < ( cos ‘ 1 ) ↔ ( ( 1 / 3 ) ↑ 2 ) < ( ( cos ‘ 1 ) ↑ 2 ) ) |
| 52 | 36 51 | mpbi | ⊢ ( ( 1 / 3 ) ↑ 2 ) < ( ( cos ‘ 1 ) ↑ 2 ) |
| 53 | 34 52 | eqbrtrri | ⊢ ( 1 / 9 ) < ( ( cos ‘ 1 ) ↑ 2 ) |
| 54 | 2pos | ⊢ 0 < 2 | |
| 55 | 3 5 | rereccli | ⊢ ( 1 / 9 ) ∈ ℝ |
| 56 | 45 | resqcli | ⊢ ( ( cos ‘ 1 ) ↑ 2 ) ∈ ℝ |
| 57 | 2re | ⊢ 2 ∈ ℝ | |
| 58 | 55 56 57 | ltmul2i | ⊢ ( 0 < 2 → ( ( 1 / 9 ) < ( ( cos ‘ 1 ) ↑ 2 ) ↔ ( 2 · ( 1 / 9 ) ) < ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ) ) |
| 59 | 54 58 | ax-mp | ⊢ ( ( 1 / 9 ) < ( ( cos ‘ 1 ) ↑ 2 ) ↔ ( 2 · ( 1 / 9 ) ) < ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ) |
| 60 | 53 59 | mpbi | ⊢ ( 2 · ( 1 / 9 ) ) < ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) |
| 61 | 27 60 | eqbrtrri | ⊢ ( 2 / 9 ) < ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) |
| 62 | 57 3 5 | redivcli | ⊢ ( 2 / 9 ) ∈ ℝ |
| 63 | 57 56 | remulcli | ⊢ ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ∈ ℝ |
| 64 | ltsub1 | ⊢ ( ( ( 2 / 9 ) ∈ ℝ ∧ ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 2 / 9 ) < ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ↔ ( ( 2 / 9 ) − 1 ) < ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) ) ) | |
| 65 | 62 63 39 64 | mp3an | ⊢ ( ( 2 / 9 ) < ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ↔ ( ( 2 / 9 ) − 1 ) < ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) ) |
| 66 | 61 65 | mpbi | ⊢ ( ( 2 / 9 ) − 1 ) < ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) |
| 67 | 22 66 | eqbrtrri | ⊢ - ( 7 / 9 ) < ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) |
| 68 | 25 | fveq2i | ⊢ ( cos ‘ ( 2 · 1 ) ) = ( cos ‘ 2 ) |
| 69 | cos2t | ⊢ ( 1 ∈ ℂ → ( cos ‘ ( 2 · 1 ) ) = ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) ) | |
| 70 | 23 69 | ax-mp | ⊢ ( cos ‘ ( 2 · 1 ) ) = ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) |
| 71 | 68 70 | eqtr3i | ⊢ ( cos ‘ 2 ) = ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) |
| 72 | 67 71 | breqtrri | ⊢ - ( 7 / 9 ) < ( cos ‘ 2 ) |
| 73 | 35 | simpri | ⊢ ( cos ‘ 1 ) < ( 2 / 3 ) |
| 74 | 0le2 | ⊢ 0 ≤ 2 | |
| 75 | 57 40 | divge0i | ⊢ ( ( 0 ≤ 2 ∧ 0 < 3 ) → 0 ≤ ( 2 / 3 ) ) |
| 76 | 74 38 75 | mp2an | ⊢ 0 ≤ ( 2 / 3 ) |
| 77 | 57 40 29 | redivcli | ⊢ ( 2 / 3 ) ∈ ℝ |
| 78 | 45 77 | lt2sqi | ⊢ ( ( 0 ≤ ( cos ‘ 1 ) ∧ 0 ≤ ( 2 / 3 ) ) → ( ( cos ‘ 1 ) < ( 2 / 3 ) ↔ ( ( cos ‘ 1 ) ↑ 2 ) < ( ( 2 / 3 ) ↑ 2 ) ) ) |
| 79 | 49 76 78 | mp2an | ⊢ ( ( cos ‘ 1 ) < ( 2 / 3 ) ↔ ( ( cos ‘ 1 ) ↑ 2 ) < ( ( 2 / 3 ) ↑ 2 ) ) |
| 80 | 73 79 | mpbi | ⊢ ( ( cos ‘ 1 ) ↑ 2 ) < ( ( 2 / 3 ) ↑ 2 ) |
| 81 | 8 28 29 | sqdivi | ⊢ ( ( 2 / 3 ) ↑ 2 ) = ( ( 2 ↑ 2 ) / ( 3 ↑ 2 ) ) |
| 82 | sq2 | ⊢ ( 2 ↑ 2 ) = 4 | |
| 83 | 82 32 | oveq12i | ⊢ ( ( 2 ↑ 2 ) / ( 3 ↑ 2 ) ) = ( 4 / 9 ) |
| 84 | 81 83 | eqtri | ⊢ ( ( 2 / 3 ) ↑ 2 ) = ( 4 / 9 ) |
| 85 | 80 84 | breqtri | ⊢ ( ( cos ‘ 1 ) ↑ 2 ) < ( 4 / 9 ) |
| 86 | 4re | ⊢ 4 ∈ ℝ | |
| 87 | 86 3 5 | redivcli | ⊢ ( 4 / 9 ) ∈ ℝ |
| 88 | 56 87 57 | ltmul2i | ⊢ ( 0 < 2 → ( ( ( cos ‘ 1 ) ↑ 2 ) < ( 4 / 9 ) ↔ ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) < ( 2 · ( 4 / 9 ) ) ) ) |
| 89 | 54 88 | ax-mp | ⊢ ( ( ( cos ‘ 1 ) ↑ 2 ) < ( 4 / 9 ) ↔ ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) < ( 2 · ( 4 / 9 ) ) ) |
| 90 | 85 89 | mpbi | ⊢ ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) < ( 2 · ( 4 / 9 ) ) |
| 91 | 4cn | ⊢ 4 ∈ ℂ | |
| 92 | 8 91 2 5 | divassi | ⊢ ( ( 2 · 4 ) / 9 ) = ( 2 · ( 4 / 9 ) ) |
| 93 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
| 94 | 91 8 93 | mulcomli | ⊢ ( 2 · 4 ) = 8 |
| 95 | 94 | oveq1i | ⊢ ( ( 2 · 4 ) / 9 ) = ( 8 / 9 ) |
| 96 | 92 95 | eqtr3i | ⊢ ( 2 · ( 4 / 9 ) ) = ( 8 / 9 ) |
| 97 | 90 96 | breqtri | ⊢ ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) < ( 8 / 9 ) |
| 98 | 8re | ⊢ 8 ∈ ℝ | |
| 99 | 98 3 5 | redivcli | ⊢ ( 8 / 9 ) ∈ ℝ |
| 100 | ltsub1 | ⊢ ( ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) ∈ ℝ ∧ ( 8 / 9 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) < ( 8 / 9 ) ↔ ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) < ( ( 8 / 9 ) − 1 ) ) ) | |
| 101 | 63 99 39 100 | mp3an | ⊢ ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) < ( 8 / 9 ) ↔ ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) < ( ( 8 / 9 ) − 1 ) ) |
| 102 | 97 101 | mpbi | ⊢ ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) < ( ( 8 / 9 ) − 1 ) |
| 103 | 20 | oveq2i | ⊢ ( ( 8 / 9 ) − ( 9 / 9 ) ) = ( ( 8 / 9 ) − 1 ) |
| 104 | divneg | ⊢ ( ( 1 ∈ ℂ ∧ 9 ∈ ℂ ∧ 9 ≠ 0 ) → - ( 1 / 9 ) = ( - 1 / 9 ) ) | |
| 105 | 23 2 5 104 | mp3an | ⊢ - ( 1 / 9 ) = ( - 1 / 9 ) |
| 106 | 8cn | ⊢ 8 ∈ ℂ | |
| 107 | 2 106 | negsubdi2i | ⊢ - ( 9 − 8 ) = ( 8 − 9 ) |
| 108 | 8p1e9 | ⊢ ( 8 + 1 ) = 9 | |
| 109 | 2 106 23 108 | subaddrii | ⊢ ( 9 − 8 ) = 1 |
| 110 | 109 | negeqi | ⊢ - ( 9 − 8 ) = - 1 |
| 111 | 107 110 | eqtr3i | ⊢ ( 8 − 9 ) = - 1 |
| 112 | 111 | oveq1i | ⊢ ( ( 8 − 9 ) / 9 ) = ( - 1 / 9 ) |
| 113 | divsubdir | ⊢ ( ( 8 ∈ ℂ ∧ 9 ∈ ℂ ∧ ( 9 ∈ ℂ ∧ 9 ≠ 0 ) ) → ( ( 8 − 9 ) / 9 ) = ( ( 8 / 9 ) − ( 9 / 9 ) ) ) | |
| 114 | 106 2 9 113 | mp3an | ⊢ ( ( 8 − 9 ) / 9 ) = ( ( 8 / 9 ) − ( 9 / 9 ) ) |
| 115 | 105 112 114 | 3eqtr2ri | ⊢ ( ( 8 / 9 ) − ( 9 / 9 ) ) = - ( 1 / 9 ) |
| 116 | 103 115 | eqtr3i | ⊢ ( ( 8 / 9 ) − 1 ) = - ( 1 / 9 ) |
| 117 | 102 116 | breqtri | ⊢ ( ( 2 · ( ( cos ‘ 1 ) ↑ 2 ) ) − 1 ) < - ( 1 / 9 ) |
| 118 | 71 117 | eqbrtri | ⊢ ( cos ‘ 2 ) < - ( 1 / 9 ) |
| 119 | 72 118 | pm3.2i | ⊢ ( - ( 7 / 9 ) < ( cos ‘ 2 ) ∧ ( cos ‘ 2 ) < - ( 1 / 9 ) ) |