This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a positive real number is less than its argument. (Contributed by Mario Carneiro, 29-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinltx | ⊢ ( 𝐴 ∈ ℝ+ → ( sin ‘ 𝐴 ) < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 3 | 2 | resincld | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 < 𝐴 ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
| 4 | 1red | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) | |
| 5 | sinbnd | ⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) ≤ 1 ) ) | |
| 6 | 5 | simprd | ⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) ≤ 1 ) |
| 7 | 1 6 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( sin ‘ 𝐴 ) ≤ 1 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 < 𝐴 ) → ( sin ‘ 𝐴 ) ≤ 1 ) |
| 9 | simpr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 < 𝐴 ) → 1 < 𝐴 ) | |
| 10 | 3 4 2 8 9 | lelttrd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 < 𝐴 ) → ( sin ‘ 𝐴 ) < 𝐴 ) |
| 11 | df-3an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ↔ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 𝐴 ≤ 1 ) ) | |
| 12 | 0xr | ⊢ 0 ∈ ℝ* | |
| 13 | 1re | ⊢ 1 ∈ ℝ | |
| 14 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) | |
| 15 | 12 13 14 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) |
| 16 | elrp | ⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) | |
| 17 | 16 | anbi1i | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ↔ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 𝐴 ≤ 1 ) ) |
| 18 | 11 15 17 | 3bitr4i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ) |
| 19 | sin01bnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) | |
| 20 | 19 | simprd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( sin ‘ 𝐴 ) < 𝐴 ) |
| 21 | 18 20 | sylbir | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( sin ‘ 𝐴 ) < 𝐴 ) |
| 22 | 1red | ⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℝ ) | |
| 23 | 10 21 22 1 | ltlecasei | ⊢ ( 𝐴 ∈ ℝ+ → ( sin ‘ 𝐴 ) < 𝐴 ) |