This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: gcd of the absolute value of the first operator. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdabs1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( ( abs ‘ 𝑁 ) = 𝑁 → ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) = 𝑁 → ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) ) |
| 3 | neggcd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( - 𝑁 gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) | |
| 4 | oveq1 | ⊢ ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( - 𝑁 gcd 𝑀 ) ) | |
| 5 | 4 | eqeq1d | ⊢ ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ↔ ( - 𝑁 gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) ) |
| 6 | 3 5 | syl5ibrcom | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) ) |
| 7 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 8 | 7 | absord | ⊢ ( 𝑁 ∈ ℤ → ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) |
| 10 | 2 6 9 | mpjaod | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) |