This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprimeprodsq2 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) → 𝐵 = ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 2 | nn0cn | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ ) | |
| 3 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 7 | 6 | eqeq2d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ↔ ( 𝐶 ↑ 2 ) = ( 𝐵 · 𝐴 ) ) ) |
| 8 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → 𝐵 ∈ ℕ0 ) | |
| 9 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → 𝐴 ∈ ℤ ) | |
| 10 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → 𝐶 ∈ ℕ0 ) | |
| 11 | nn0z | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) | |
| 12 | gcdcom | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) | |
| 13 | 12 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = ( ( 𝐵 gcd 𝐴 ) gcd 𝐶 ) ) |
| 14 | 13 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ↔ ( ( 𝐵 gcd 𝐴 ) gcd 𝐶 ) = 1 ) ) |
| 15 | 11 14 | sylan2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ↔ ( ( 𝐵 gcd 𝐴 ) gcd 𝐶 ) = 1 ) ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ↔ ( ( 𝐵 gcd 𝐴 ) gcd 𝐶 ) = 1 ) ) |
| 17 | 16 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐵 gcd 𝐴 ) gcd 𝐶 ) = 1 ) |
| 18 | coprimeprodsq | ⊢ ( ( ( 𝐵 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐵 gcd 𝐴 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐵 · 𝐴 ) → 𝐵 = ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) ) ) | |
| 19 | 8 9 10 17 18 | syl31anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐵 · 𝐴 ) → 𝐵 = ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) ) ) |
| 20 | 7 19 | sylbid | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) → 𝐵 = ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) ) ) |