This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Connectedness for a subspace. See connsub . (Contributed by FL, 29-May-2014) (Proof shortened by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | connsuba | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( ( J |`t A ) e. Conn <-> A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resttopon | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
|
| 2 | dfconn2 | |- ( ( J |`t A ) e. ( TopOn ` A ) -> ( ( J |`t A ) e. Conn <-> A. u e. ( J |`t A ) A. v e. ( J |`t A ) ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) ) ) |
|
| 3 | 1 2 | syl | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( ( J |`t A ) e. Conn <-> A. u e. ( J |`t A ) A. v e. ( J |`t A ) ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) ) ) |
| 4 | vex | |- x e. _V |
|
| 5 | 4 | inex1 | |- ( x i^i A ) e. _V |
| 6 | 5 | a1i | |- ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ x e. J ) -> ( x i^i A ) e. _V ) |
| 7 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 8 | 7 | adantr | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> X e. J ) |
| 9 | simpr | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A C_ X ) |
|
| 10 | 8 9 | ssexd | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A e. _V ) |
| 11 | elrest | |- ( ( J e. ( TopOn ` X ) /\ A e. _V ) -> ( u e. ( J |`t A ) <-> E. x e. J u = ( x i^i A ) ) ) |
|
| 12 | 10 11 | syldan | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( u e. ( J |`t A ) <-> E. x e. J u = ( x i^i A ) ) ) |
| 13 | vex | |- y e. _V |
|
| 14 | 13 | inex1 | |- ( y i^i A ) e. _V |
| 15 | 14 | a1i | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ y e. J ) -> ( y i^i A ) e. _V ) |
| 16 | elrest | |- ( ( J e. ( TopOn ` X ) /\ A e. _V ) -> ( v e. ( J |`t A ) <-> E. y e. J v = ( y i^i A ) ) ) |
|
| 17 | 10 16 | syldan | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( v e. ( J |`t A ) <-> E. y e. J v = ( y i^i A ) ) ) |
| 18 | 17 | adantr | |- ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) -> ( v e. ( J |`t A ) <-> E. y e. J v = ( y i^i A ) ) ) |
| 19 | simplr | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> u = ( x i^i A ) ) |
|
| 20 | 19 | neeq1d | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u =/= (/) <-> ( x i^i A ) =/= (/) ) ) |
| 21 | simpr | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> v = ( y i^i A ) ) |
|
| 22 | 21 | neeq1d | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( v =/= (/) <-> ( y i^i A ) =/= (/) ) ) |
| 23 | 19 21 | ineq12d | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u i^i v ) = ( ( x i^i A ) i^i ( y i^i A ) ) ) |
| 24 | inindir | |- ( ( x i^i y ) i^i A ) = ( ( x i^i A ) i^i ( y i^i A ) ) |
|
| 25 | 23 24 | eqtr4di | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u i^i v ) = ( ( x i^i y ) i^i A ) ) |
| 26 | 25 | eqeq1d | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( ( u i^i v ) = (/) <-> ( ( x i^i y ) i^i A ) = (/) ) ) |
| 27 | 20 22 26 | 3anbi123d | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) <-> ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) ) ) |
| 28 | 19 21 | uneq12d | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u u. v ) = ( ( x i^i A ) u. ( y i^i A ) ) ) |
| 29 | indir | |- ( ( x u. y ) i^i A ) = ( ( x i^i A ) u. ( y i^i A ) ) |
|
| 30 | 28 29 | eqtr4di | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u u. v ) = ( ( x u. y ) i^i A ) ) |
| 31 | 30 | neeq1d | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( ( u u. v ) =/= A <-> ( ( x u. y ) i^i A ) =/= A ) ) |
| 32 | 27 31 | imbi12d | |- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) <-> ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |
| 33 | 15 18 32 | ralxfr2d | |- ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) -> ( A. v e. ( J |`t A ) ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) <-> A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |
| 34 | 6 12 33 | ralxfr2d | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( A. u e. ( J |`t A ) A. v e. ( J |`t A ) ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) <-> A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |
| 35 | 3 34 | bitrd | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( ( J |`t A ) e. Conn <-> A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |