This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 1-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfffval.o | ⊢ 𝑂 = ( compf ‘ 𝐶 ) | |
| comfffval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| comfffval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| comfffval.x | ⊢ · = ( comp ‘ 𝐶 ) | ||
| Assertion | comfffval | ⊢ 𝑂 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval.o | ⊢ 𝑂 = ( compf ‘ 𝐶 ) | |
| 2 | comfffval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | comfffval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | comfffval.x | ⊢ · = ( comp ‘ 𝐶 ) | |
| 5 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) | |
| 6 | 5 2 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 7 | 6 | sqxpeqd | ⊢ ( 𝑐 = 𝐶 → ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) = ( 𝐵 × 𝐵 ) ) |
| 8 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) | |
| 9 | 8 3 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐻 ) |
| 10 | 9 | oveqd | ⊢ ( 𝑐 = 𝐶 → ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) 𝑦 ) = ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) ) |
| 11 | 9 | fveq1d | ⊢ ( 𝑐 = 𝐶 → ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
| 12 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( comp ‘ 𝑐 ) = ( comp ‘ 𝐶 ) ) | |
| 13 | 12 4 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( comp ‘ 𝑐 ) = · ) |
| 14 | 13 | oveqd | ⊢ ( 𝑐 = 𝐶 → ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 15 | 14 | oveqd | ⊢ ( 𝑐 = 𝐶 → ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) = ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) |
| 16 | 10 11 15 | mpoeq123dv | ⊢ ( 𝑐 = 𝐶 → ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) 𝑦 ) , 𝑓 ∈ ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) |
| 17 | 7 6 16 | mpoeq123dv | ⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) 𝑦 ) , 𝑓 ∈ ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) ) ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) ) |
| 18 | df-comf | ⊢ compf = ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) 𝑦 ) , 𝑓 ∈ ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 ( comp ‘ 𝑐 ) 𝑦 ) 𝑓 ) ) ) ) | |
| 19 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 20 | 19 19 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 21 | 20 19 | mpoex | ⊢ ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) ∈ V |
| 22 | 17 18 21 | fvmpt | ⊢ ( 𝐶 ∈ V → ( compf ‘ 𝐶 ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) ) |
| 23 | fvprc | ⊢ ( ¬ 𝐶 ∈ V → ( compf ‘ 𝐶 ) = ∅ ) | |
| 24 | fvprc | ⊢ ( ¬ 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ∅ ) | |
| 25 | 2 24 | eqtrid | ⊢ ( ¬ 𝐶 ∈ V → 𝐵 = ∅ ) |
| 26 | 25 | olcd | ⊢ ( ¬ 𝐶 ∈ V → ( ( 𝐵 × 𝐵 ) = ∅ ∨ 𝐵 = ∅ ) ) |
| 27 | 0mpo0 | ⊢ ( ( ( 𝐵 × 𝐵 ) = ∅ ∨ 𝐵 = ∅ ) → ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) = ∅ ) | |
| 28 | 26 27 | syl | ⊢ ( ¬ 𝐶 ∈ V → ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) = ∅ ) |
| 29 | 23 28 | eqtr4d | ⊢ ( ¬ 𝐶 ∈ V → ( compf ‘ 𝐶 ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) ) |
| 30 | 22 29 | pm2.61i | ⊢ ( compf ‘ 𝐶 ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) |
| 31 | 1 30 | eqtri | ⊢ 𝑂 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑦 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑦 ) 𝑓 ) ) ) |