This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfeq.1 | |- .x. = ( comp ` C ) |
|
| comfeq.2 | |- .xb = ( comp ` D ) |
||
| comfeq.h | |- H = ( Hom ` C ) |
||
| comfeq.3 | |- ( ph -> B = ( Base ` C ) ) |
||
| comfeq.4 | |- ( ph -> B = ( Base ` D ) ) |
||
| comfeq.5 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
||
| Assertion | comfeq | |- ( ph -> ( ( comf ` C ) = ( comf ` D ) <-> A. x e. B A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfeq.1 | |- .x. = ( comp ` C ) |
|
| 2 | comfeq.2 | |- .xb = ( comp ` D ) |
|
| 3 | comfeq.h | |- H = ( Hom ` C ) |
|
| 4 | comfeq.3 | |- ( ph -> B = ( Base ` C ) ) |
|
| 5 | comfeq.4 | |- ( ph -> B = ( Base ` D ) ) |
|
| 6 | comfeq.5 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 7 | 4 | sqxpeqd | |- ( ph -> ( B X. B ) = ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 8 | eqidd | |- ( ph -> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) = ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) ) |
|
| 9 | 7 4 8 | mpoeq123dv | |- ( ph -> ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) ) = ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) ) ) |
| 10 | eqid | |- ( comf ` C ) = ( comf ` C ) |
|
| 11 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 12 | 10 11 3 1 | comfffval | |- ( comf ` C ) = ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) ) |
| 13 | 9 12 | eqtr4di | |- ( ph -> ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) ) = ( comf ` C ) ) |
| 14 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 15 | 6 | 3ad2ant1 | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 16 | xp2nd | |- ( u e. ( B X. B ) -> ( 2nd ` u ) e. B ) |
|
| 17 | 16 | 3ad2ant2 | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( 2nd ` u ) e. B ) |
| 18 | 4 | 3ad2ant1 | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> B = ( Base ` C ) ) |
| 19 | 17 18 | eleqtrd | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( 2nd ` u ) e. ( Base ` C ) ) |
| 20 | simp3 | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> z e. B ) |
|
| 21 | 20 18 | eleqtrd | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> z e. ( Base ` C ) ) |
| 22 | 11 3 14 15 19 21 | homfeqval | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( ( 2nd ` u ) H z ) = ( ( 2nd ` u ) ( Hom ` D ) z ) ) |
| 23 | xp1st | |- ( u e. ( B X. B ) -> ( 1st ` u ) e. B ) |
|
| 24 | 23 | 3ad2ant2 | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( 1st ` u ) e. B ) |
| 25 | 24 18 | eleqtrd | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( 1st ` u ) e. ( Base ` C ) ) |
| 26 | 11 3 14 15 25 19 | homfeqval | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( ( 1st ` u ) H ( 2nd ` u ) ) = ( ( 1st ` u ) ( Hom ` D ) ( 2nd ` u ) ) ) |
| 27 | df-ov | |- ( ( 1st ` u ) H ( 2nd ` u ) ) = ( H ` <. ( 1st ` u ) , ( 2nd ` u ) >. ) |
|
| 28 | df-ov | |- ( ( 1st ` u ) ( Hom ` D ) ( 2nd ` u ) ) = ( ( Hom ` D ) ` <. ( 1st ` u ) , ( 2nd ` u ) >. ) |
|
| 29 | 26 27 28 | 3eqtr3g | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( H ` <. ( 1st ` u ) , ( 2nd ` u ) >. ) = ( ( Hom ` D ) ` <. ( 1st ` u ) , ( 2nd ` u ) >. ) ) |
| 30 | 1st2nd2 | |- ( u e. ( B X. B ) -> u = <. ( 1st ` u ) , ( 2nd ` u ) >. ) |
|
| 31 | 30 | 3ad2ant2 | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> u = <. ( 1st ` u ) , ( 2nd ` u ) >. ) |
| 32 | 31 | fveq2d | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( H ` u ) = ( H ` <. ( 1st ` u ) , ( 2nd ` u ) >. ) ) |
| 33 | 31 | fveq2d | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( ( Hom ` D ) ` u ) = ( ( Hom ` D ) ` <. ( 1st ` u ) , ( 2nd ` u ) >. ) ) |
| 34 | 29 32 33 | 3eqtr4d | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( H ` u ) = ( ( Hom ` D ) ` u ) ) |
| 35 | eqidd | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( g ( u .xb z ) f ) = ( g ( u .xb z ) f ) ) |
|
| 36 | 22 34 35 | mpoeq123dv | |- ( ( ph /\ u e. ( B X. B ) /\ z e. B ) -> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) = ( g e. ( ( 2nd ` u ) ( Hom ` D ) z ) , f e. ( ( Hom ` D ) ` u ) |-> ( g ( u .xb z ) f ) ) ) |
| 37 | 36 | mpoeq3dva | |- ( ph -> ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) ) = ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) ( Hom ` D ) z ) , f e. ( ( Hom ` D ) ` u ) |-> ( g ( u .xb z ) f ) ) ) ) |
| 38 | 5 | sqxpeqd | |- ( ph -> ( B X. B ) = ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 39 | eqidd | |- ( ph -> ( g e. ( ( 2nd ` u ) ( Hom ` D ) z ) , f e. ( ( Hom ` D ) ` u ) |-> ( g ( u .xb z ) f ) ) = ( g e. ( ( 2nd ` u ) ( Hom ` D ) z ) , f e. ( ( Hom ` D ) ` u ) |-> ( g ( u .xb z ) f ) ) ) |
|
| 40 | 38 5 39 | mpoeq123dv | |- ( ph -> ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) ( Hom ` D ) z ) , f e. ( ( Hom ` D ) ` u ) |-> ( g ( u .xb z ) f ) ) ) = ( u e. ( ( Base ` D ) X. ( Base ` D ) ) , z e. ( Base ` D ) |-> ( g e. ( ( 2nd ` u ) ( Hom ` D ) z ) , f e. ( ( Hom ` D ) ` u ) |-> ( g ( u .xb z ) f ) ) ) ) |
| 41 | 37 40 | eqtrd | |- ( ph -> ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) ) = ( u e. ( ( Base ` D ) X. ( Base ` D ) ) , z e. ( Base ` D ) |-> ( g e. ( ( 2nd ` u ) ( Hom ` D ) z ) , f e. ( ( Hom ` D ) ` u ) |-> ( g ( u .xb z ) f ) ) ) ) |
| 42 | eqid | |- ( comf ` D ) = ( comf ` D ) |
|
| 43 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 44 | 42 43 14 2 | comfffval | |- ( comf ` D ) = ( u e. ( ( Base ` D ) X. ( Base ` D ) ) , z e. ( Base ` D ) |-> ( g e. ( ( 2nd ` u ) ( Hom ` D ) z ) , f e. ( ( Hom ` D ) ` u ) |-> ( g ( u .xb z ) f ) ) ) |
| 45 | 41 44 | eqtr4di | |- ( ph -> ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) ) = ( comf ` D ) ) |
| 46 | 13 45 | eqeq12d | |- ( ph -> ( ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) ) = ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) ) <-> ( comf ` C ) = ( comf ` D ) ) ) |
| 47 | ovex | |- ( ( 2nd ` u ) H z ) e. _V |
|
| 48 | fvex | |- ( H ` u ) e. _V |
|
| 49 | 47 48 | mpoex | |- ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) e. _V |
| 50 | 49 | rgen2w | |- A. u e. ( B X. B ) A. z e. B ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) e. _V |
| 51 | mpo2eqb | |- ( A. u e. ( B X. B ) A. z e. B ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) e. _V -> ( ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) ) = ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) ) <-> A. u e. ( B X. B ) A. z e. B ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) = ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) ) ) |
|
| 52 | 50 51 | ax-mp | |- ( ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) ) = ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) ) <-> A. u e. ( B X. B ) A. z e. B ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) = ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) ) |
| 53 | vex | |- x e. _V |
|
| 54 | vex | |- y e. _V |
|
| 55 | 53 54 | op2ndd | |- ( u = <. x , y >. -> ( 2nd ` u ) = y ) |
| 56 | 55 | oveq1d | |- ( u = <. x , y >. -> ( ( 2nd ` u ) H z ) = ( y H z ) ) |
| 57 | fveq2 | |- ( u = <. x , y >. -> ( H ` u ) = ( H ` <. x , y >. ) ) |
|
| 58 | df-ov | |- ( x H y ) = ( H ` <. x , y >. ) |
|
| 59 | 57 58 | eqtr4di | |- ( u = <. x , y >. -> ( H ` u ) = ( x H y ) ) |
| 60 | oveq1 | |- ( u = <. x , y >. -> ( u .x. z ) = ( <. x , y >. .x. z ) ) |
|
| 61 | 60 | oveqd | |- ( u = <. x , y >. -> ( g ( u .x. z ) f ) = ( g ( <. x , y >. .x. z ) f ) ) |
| 62 | oveq1 | |- ( u = <. x , y >. -> ( u .xb z ) = ( <. x , y >. .xb z ) ) |
|
| 63 | 62 | oveqd | |- ( u = <. x , y >. -> ( g ( u .xb z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) |
| 64 | 61 63 | eqeq12d | |- ( u = <. x , y >. -> ( ( g ( u .x. z ) f ) = ( g ( u .xb z ) f ) <-> ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) ) |
| 65 | 59 64 | raleqbidv | |- ( u = <. x , y >. -> ( A. f e. ( H ` u ) ( g ( u .x. z ) f ) = ( g ( u .xb z ) f ) <-> A. f e. ( x H y ) ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) ) |
| 66 | 56 65 | raleqbidv | |- ( u = <. x , y >. -> ( A. g e. ( ( 2nd ` u ) H z ) A. f e. ( H ` u ) ( g ( u .x. z ) f ) = ( g ( u .xb z ) f ) <-> A. g e. ( y H z ) A. f e. ( x H y ) ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) ) |
| 67 | ovex | |- ( g ( u .x. z ) f ) e. _V |
|
| 68 | 67 | rgen2w | |- A. g e. ( ( 2nd ` u ) H z ) A. f e. ( H ` u ) ( g ( u .x. z ) f ) e. _V |
| 69 | mpo2eqb | |- ( A. g e. ( ( 2nd ` u ) H z ) A. f e. ( H ` u ) ( g ( u .x. z ) f ) e. _V -> ( ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) = ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) <-> A. g e. ( ( 2nd ` u ) H z ) A. f e. ( H ` u ) ( g ( u .x. z ) f ) = ( g ( u .xb z ) f ) ) ) |
|
| 70 | 68 69 | ax-mp | |- ( ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) = ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) <-> A. g e. ( ( 2nd ` u ) H z ) A. f e. ( H ` u ) ( g ( u .x. z ) f ) = ( g ( u .xb z ) f ) ) |
| 71 | ralcom | |- ( A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) <-> A. g e. ( y H z ) A. f e. ( x H y ) ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) |
|
| 72 | 66 70 71 | 3bitr4g | |- ( u = <. x , y >. -> ( ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) = ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) <-> A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) ) |
| 73 | 72 | ralbidv | |- ( u = <. x , y >. -> ( A. z e. B ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) = ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) <-> A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) ) |
| 74 | 73 | ralxp | |- ( A. u e. ( B X. B ) A. z e. B ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) = ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) <-> A. x e. B A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) |
| 75 | 52 74 | bitri | |- ( ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .x. z ) f ) ) ) = ( u e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` u ) H z ) , f e. ( H ` u ) |-> ( g ( u .xb z ) f ) ) ) <-> A. x e. B A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) |
| 76 | 46 75 | bitr3di | |- ( ph -> ( ( comf ` C ) = ( comf ` D ) <-> A. x e. B A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. .x. z ) f ) = ( g ( <. x , y >. .xb z ) f ) ) ) |