This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem r19.3rzv

Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 10-Mar-1997) Avoid ax-12 . (Revised by TM, 16-Feb-2026)

Ref Expression
Assertion r19.3rzv ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∀ 𝑥𝐴 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ax-1 ( 𝜑 → ( 𝑥𝐴𝜑 ) )
2 1 ralrimiv ( 𝜑 → ∀ 𝑥𝐴 𝜑 )
3 rspn0 ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 𝜑𝜑 ) )
4 2 3 impbid2 ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∀ 𝑥𝐴 𝜑 ) )