This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence for coe1mul2 . (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coe1mul2lem1 | |- ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) -> ( X oR <_ ( 1o X. { A } ) <-> ( X ` (/) ) e. ( 0 ... A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on | |- 1o e. On |
|
| 2 | 1 | a1i | |- ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) -> 1o e. On ) |
| 3 | fvexd | |- ( ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) /\ a e. 1o ) -> ( X ` (/) ) e. _V ) |
|
| 4 | simpll | |- ( ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) /\ a e. 1o ) -> A e. NN0 ) |
|
| 5 | df1o2 | |- 1o = { (/) } |
|
| 6 | nn0ex | |- NN0 e. _V |
|
| 7 | 0ex | |- (/) e. _V |
|
| 8 | 5 6 7 | mapsnconst | |- ( X e. ( NN0 ^m 1o ) -> X = ( 1o X. { ( X ` (/) ) } ) ) |
| 9 | 8 | adantl | |- ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) -> X = ( 1o X. { ( X ` (/) ) } ) ) |
| 10 | fconstmpt | |- ( 1o X. { ( X ` (/) ) } ) = ( a e. 1o |-> ( X ` (/) ) ) |
|
| 11 | 9 10 | eqtrdi | |- ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) -> X = ( a e. 1o |-> ( X ` (/) ) ) ) |
| 12 | fconstmpt | |- ( 1o X. { A } ) = ( a e. 1o |-> A ) |
|
| 13 | 12 | a1i | |- ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) -> ( 1o X. { A } ) = ( a e. 1o |-> A ) ) |
| 14 | 2 3 4 11 13 | ofrfval2 | |- ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) -> ( X oR <_ ( 1o X. { A } ) <-> A. a e. 1o ( X ` (/) ) <_ A ) ) |
| 15 | 1n0 | |- 1o =/= (/) |
|
| 16 | r19.3rzv | |- ( 1o =/= (/) -> ( ( X ` (/) ) <_ A <-> A. a e. 1o ( X ` (/) ) <_ A ) ) |
|
| 17 | 15 16 | mp1i | |- ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) -> ( ( X ` (/) ) <_ A <-> A. a e. 1o ( X ` (/) ) <_ A ) ) |
| 18 | elmapi | |- ( X e. ( NN0 ^m 1o ) -> X : 1o --> NN0 ) |
|
| 19 | 0lt1o | |- (/) e. 1o |
|
| 20 | ffvelcdm | |- ( ( X : 1o --> NN0 /\ (/) e. 1o ) -> ( X ` (/) ) e. NN0 ) |
|
| 21 | 18 19 20 | sylancl | |- ( X e. ( NN0 ^m 1o ) -> ( X ` (/) ) e. NN0 ) |
| 22 | 21 | adantl | |- ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) -> ( X ` (/) ) e. NN0 ) |
| 23 | 22 | biantrurd | |- ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) -> ( ( X ` (/) ) <_ A <-> ( ( X ` (/) ) e. NN0 /\ ( X ` (/) ) <_ A ) ) ) |
| 24 | fznn0 | |- ( A e. NN0 -> ( ( X ` (/) ) e. ( 0 ... A ) <-> ( ( X ` (/) ) e. NN0 /\ ( X ` (/) ) <_ A ) ) ) |
|
| 25 | 24 | adantr | |- ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) -> ( ( X ` (/) ) e. ( 0 ... A ) <-> ( ( X ` (/) ) e. NN0 /\ ( X ` (/) ) <_ A ) ) ) |
| 26 | 23 25 | bitr4d | |- ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) -> ( ( X ` (/) ) <_ A <-> ( X ` (/) ) e. ( 0 ... A ) ) ) |
| 27 | 14 17 26 | 3bitr2d | |- ( ( A e. NN0 /\ X e. ( NN0 ^m 1o ) ) -> ( X oR <_ ( 1o X. { A } ) <-> ( X ` (/) ) e. ( 0 ... A ) ) ) |