This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for resubdrg and friends. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnsubglem.1 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) | |
| cnsubglem.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) | ||
| cnsubglem.3 | ⊢ ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ 𝐴 ) | ||
| cnsubrglem.4 | ⊢ 1 ∈ 𝐴 | ||
| cnsubrglem.5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) | ||
| cnsubrglem.6 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ 𝐴 ) | ||
| Assertion | cnsubdrglem | ⊢ ( 𝐴 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐴 ) ∈ DivRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) | |
| 2 | cnsubglem.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) | |
| 3 | cnsubglem.3 | ⊢ ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ 𝐴 ) | |
| 4 | cnsubrglem.4 | ⊢ 1 ∈ 𝐴 | |
| 5 | cnsubrglem.5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) | |
| 6 | cnsubrglem.6 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ 𝐴 ) | |
| 7 | 1 2 3 4 5 | cnsubrglem | ⊢ 𝐴 ∈ ( SubRing ‘ ℂfld ) |
| 8 | cndrng | ⊢ ℂfld ∈ DivRing | |
| 9 | eqid | ⊢ ( ℂfld ↾s 𝐴 ) = ( ℂfld ↾s 𝐴 ) | |
| 10 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 11 | eqid | ⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) | |
| 12 | 9 10 11 | issubdrg | ⊢ ( ( ℂfld ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ ℂfld ) ) → ( ( ℂfld ↾s 𝐴 ) ∈ DivRing ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 13 | 8 7 12 | mp2an | ⊢ ( ( ℂfld ↾s 𝐴 ) ∈ DivRing ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 14 | cnring | ⊢ ℂfld ∈ Ring | |
| 15 | 1 | ssriv | ⊢ 𝐴 ⊆ ℂ |
| 16 | ssdif | ⊢ ( 𝐴 ⊆ ℂ → ( 𝐴 ∖ { 0 } ) ⊆ ( ℂ ∖ { 0 } ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ( 𝐴 ∖ { 0 } ) ⊆ ( ℂ ∖ { 0 } ) |
| 18 | 17 | sseli | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) |
| 19 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 20 | 19 10 8 | drngui | ⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 21 | cnflddiv | ⊢ / = ( /r ‘ ℂfld ) | |
| 22 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 23 | 19 20 21 22 11 | ringinvdv | ⊢ ( ( ℂfld ∈ Ring ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) = ( 1 / 𝑥 ) ) |
| 24 | 14 18 23 | sylancr | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) = ( 1 / 𝑥 ) ) |
| 25 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) ) | |
| 26 | 25 6 | sylbi | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) → ( 1 / 𝑥 ) ∈ 𝐴 ) |
| 27 | 24 26 | eqeltrd | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) → ( ( invr ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 28 | 13 27 | mprgbir | ⊢ ( ℂfld ↾s 𝐴 ) ∈ DivRing |
| 29 | 7 28 | pm3.2i | ⊢ ( 𝐴 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐴 ) ∈ DivRing ) |