This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for resubdrg and friends. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnsubglem.1 | |- ( x e. A -> x e. CC ) |
|
| cnsubglem.2 | |- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
||
| cnsubglem.3 | |- ( x e. A -> -u x e. A ) |
||
| cnsubrglem.4 | |- 1 e. A |
||
| cnsubrglem.5 | |- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A ) |
||
| cnsubrglem.6 | |- ( ( x e. A /\ x =/= 0 ) -> ( 1 / x ) e. A ) |
||
| Assertion | cnsubdrglem | |- ( A e. ( SubRing ` CCfld ) /\ ( CCfld |`s A ) e. DivRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | |- ( x e. A -> x e. CC ) |
|
| 2 | cnsubglem.2 | |- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
|
| 3 | cnsubglem.3 | |- ( x e. A -> -u x e. A ) |
|
| 4 | cnsubrglem.4 | |- 1 e. A |
|
| 5 | cnsubrglem.5 | |- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A ) |
|
| 6 | cnsubrglem.6 | |- ( ( x e. A /\ x =/= 0 ) -> ( 1 / x ) e. A ) |
|
| 7 | 1 2 3 4 5 | cnsubrglem | |- A e. ( SubRing ` CCfld ) |
| 8 | cndrng | |- CCfld e. DivRing |
|
| 9 | eqid | |- ( CCfld |`s A ) = ( CCfld |`s A ) |
|
| 10 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 11 | eqid | |- ( invr ` CCfld ) = ( invr ` CCfld ) |
|
| 12 | 9 10 11 | issubdrg | |- ( ( CCfld e. DivRing /\ A e. ( SubRing ` CCfld ) ) -> ( ( CCfld |`s A ) e. DivRing <-> A. x e. ( A \ { 0 } ) ( ( invr ` CCfld ) ` x ) e. A ) ) |
| 13 | 8 7 12 | mp2an | |- ( ( CCfld |`s A ) e. DivRing <-> A. x e. ( A \ { 0 } ) ( ( invr ` CCfld ) ` x ) e. A ) |
| 14 | cnring | |- CCfld e. Ring |
|
| 15 | 1 | ssriv | |- A C_ CC |
| 16 | ssdif | |- ( A C_ CC -> ( A \ { 0 } ) C_ ( CC \ { 0 } ) ) |
|
| 17 | 15 16 | ax-mp | |- ( A \ { 0 } ) C_ ( CC \ { 0 } ) |
| 18 | 17 | sseli | |- ( x e. ( A \ { 0 } ) -> x e. ( CC \ { 0 } ) ) |
| 19 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 20 | 19 10 8 | drngui | |- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 21 | cnflddiv | |- / = ( /r ` CCfld ) |
|
| 22 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 23 | 19 20 21 22 11 | ringinvdv | |- ( ( CCfld e. Ring /\ x e. ( CC \ { 0 } ) ) -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) ) |
| 24 | 14 18 23 | sylancr | |- ( x e. ( A \ { 0 } ) -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) ) |
| 25 | eldifsn | |- ( x e. ( A \ { 0 } ) <-> ( x e. A /\ x =/= 0 ) ) |
|
| 26 | 25 6 | sylbi | |- ( x e. ( A \ { 0 } ) -> ( 1 / x ) e. A ) |
| 27 | 24 26 | eqeltrd | |- ( x e. ( A \ { 0 } ) -> ( ( invr ` CCfld ) ` x ) e. A ) |
| 28 | 13 27 | mprgbir | |- ( CCfld |`s A ) e. DivRing |
| 29 | 7 28 | pm3.2i | |- ( A e. ( SubRing ` CCfld ) /\ ( CCfld |`s A ) e. DivRing ) |