This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014) (Revised by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resubdrg | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 2 | readdcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) | |
| 3 | renegcl | ⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) | |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | remulcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) | |
| 6 | rereccl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℝ ) | |
| 7 | 1 2 3 4 5 6 | cnsubdrglem | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℝ ) ∈ DivRing ) |
| 8 | df-refld | ⊢ ℝfld = ( ℂfld ↾s ℝ ) | |
| 9 | 8 | eleq1i | ⊢ ( ℝfld ∈ DivRing ↔ ( ℂfld ↾s ℝ ) ∈ DivRing ) |
| 10 | 9 | anbi2i | ⊢ ( ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) ↔ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℝ ) ∈ DivRing ) ) |
| 11 | 7 10 | mpbir | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |