This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for resubdrg and friends. (Contributed by Mario Carneiro, 4-Dec-2014) Avoid ax-mulf . (Revised by GG, 30-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnsubglem.1 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) | |
| cnsubglem.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) | ||
| cnsubglem.3 | ⊢ ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ 𝐴 ) | ||
| cnsubrglem.4 | ⊢ 1 ∈ 𝐴 | ||
| cnsubrglem.5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) | ||
| Assertion | cnsubrglem | ⊢ 𝐴 ∈ ( SubRing ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) | |
| 2 | cnsubglem.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) | |
| 3 | cnsubglem.3 | ⊢ ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ 𝐴 ) | |
| 4 | cnsubrglem.4 | ⊢ 1 ∈ 𝐴 | |
| 5 | cnsubrglem.5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) | |
| 6 | 1 2 3 4 | cnsubglem | ⊢ 𝐴 ∈ ( SubGrp ‘ ℂfld ) |
| 7 | 1 | adantr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ ℂ ) |
| 8 | 1 | ax-gen | ⊢ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) |
| 9 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 10 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ℂ ↔ 𝑦 ∈ ℂ ) ) | |
| 11 | 9 10 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) ↔ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ ) ) ) |
| 12 | 11 | spvv | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ ) ) |
| 13 | 8 12 | ax-mp | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ ) |
| 14 | 13 | adantl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℂ ) |
| 15 | 7 14 | jca | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) |
| 16 | ovmpot | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 18 | 17 | eqcomd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
| 19 | 18 | eleq1d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 · 𝑦 ) ∈ 𝐴 ↔ ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ 𝐴 ) ) |
| 20 | 5 19 | mpbid | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ 𝐴 ) |
| 21 | 20 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ 𝐴 |
| 22 | cnring | ⊢ ℂfld ∈ Ring | |
| 23 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 24 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 25 | mpocnfldmul | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) = ( .r ‘ ℂfld ) | |
| 26 | 23 24 25 | issubrg2 | ⊢ ( ℂfld ∈ Ring → ( 𝐴 ∈ ( SubRing ‘ ℂfld ) ↔ ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ 𝐴 ) ) ) |
| 27 | 22 26 | ax-mp | ⊢ ( 𝐴 ∈ ( SubRing ‘ ℂfld ) ↔ ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ 𝐴 ) ) |
| 28 | 6 4 21 27 | mpbir3an | ⊢ 𝐴 ∈ ( SubRing ‘ ℂfld ) |