This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of a function at a point in terms of filter limits. (Contributed by Jeff Hankins, 7-Sep-2009) (Revised by Stefan O'Rear, 7-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnpflf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnpf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 2 | 1 | 3expa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 3 | 2 | 3adantl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 4 | cnpflfi | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) | |
| 5 | 4 | expcom | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) → ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) |
| 6 | 5 | ralrimivw | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) → ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) |
| 8 | 3 7 | jca | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
| 9 | 8 | ex | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) ) |
| 10 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 11 | simpl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐴 ∈ 𝑋 ) | |
| 12 | neiflim | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ( 𝐽 fLim ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐴 ∈ ( 𝐽 fLim ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 14 | 11 | snssd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → { 𝐴 } ⊆ 𝑋 ) |
| 15 | 11 | snn0d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → { 𝐴 } ≠ ∅ ) |
| 16 | neifil | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ { 𝐴 } ⊆ 𝑋 ∧ { 𝐴 } ≠ ∅ ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 17 | 10 14 15 16 | syl3anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( Fil ‘ 𝑋 ) ) |
| 18 | oveq2 | ⊢ ( 𝑓 = ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝐽 fLim 𝑓 ) = ( 𝐽 fLim ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) | |
| 19 | 18 | eleq2d | ⊢ ( 𝑓 = ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) ↔ 𝐴 ∈ ( 𝐽 fLim ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 20 | oveq2 | ⊢ ( 𝑓 = ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝐾 fLimf 𝑓 ) = ( 𝐾 fLimf ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) | |
| 21 | 20 | fveq1d | ⊢ ( 𝑓 = ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) = ( ( 𝐾 fLimf ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ‘ 𝐹 ) ) |
| 22 | 21 | eleq2d | ⊢ ( 𝑓 = ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ‘ 𝐹 ) ) ) |
| 23 | 19 22 | imbi12d | ⊢ ( 𝑓 = ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ↔ ( 𝐴 ∈ ( 𝐽 fLim ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ‘ 𝐹 ) ) ) ) |
| 24 | 23 | rspcv | ⊢ ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) → ( 𝐴 ∈ ( 𝐽 fLim ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ‘ 𝐹 ) ) ) ) |
| 25 | 17 24 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) → ( 𝐴 ∈ ( 𝐽 fLim ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ‘ 𝐹 ) ) ) ) |
| 26 | 13 25 | mpid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ‘ 𝐹 ) ) ) |
| 27 | 26 | imdistanda | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ‘ 𝐹 ) ) ) ) |
| 28 | eqid | ⊢ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) | |
| 29 | 28 | cnpflf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ‘ 𝐹 ) ) ) ) |
| 30 | 27 29 | sylibrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ) |
| 31 | 9 30 | impbid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐴 ∈ ( 𝐽 fLim 𝑓 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) ) |