This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Forward direction of cnpflf . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnpflfi | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1 2 | cnpf | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 5 | 1 | flimelbas | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → 𝐴 ∈ ∪ 𝐽 ) |
| 7 | 4 6 | ffvelcdmd | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ∪ 𝐾 ) |
| 8 | simplr | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) | |
| 9 | simprl | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) → 𝑥 ∈ 𝐾 ) | |
| 10 | simprr | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) | |
| 11 | cnpimaex | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) → ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) | |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) |
| 13 | anass | ⊢ ( ( ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ↔ ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) | |
| 14 | simpl | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ) | |
| 15 | flimtop | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) → 𝐽 ∈ Top ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → 𝐽 ∈ Top ) |
| 17 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 18 | 16 17 | sylib | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 19 | 1 | flimfil | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) → 𝐿 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → 𝐿 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 21 | flimopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐿 ∈ ( Fil ‘ ∪ 𝐽 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ↔ ( 𝐴 ∈ ∪ 𝐽 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿 ) ) ) ) | |
| 22 | 18 20 21 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ↔ ( 𝐴 ∈ ∪ 𝐽 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿 ) ) ) ) |
| 23 | 14 22 | mpbid | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → ( 𝐴 ∈ ∪ 𝐽 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿 ) ) ) |
| 24 | 23 | simprd | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿 ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) → ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿 ) ) |
| 26 | 25 | r19.21bi | ⊢ ( ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿 ) ) |
| 27 | 26 | expimpd | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) → ( ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) → 𝑦 ∈ 𝐿 ) ) |
| 28 | 27 | anim1d | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) → ( ( ( 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) → ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) |
| 29 | 13 28 | biimtrrid | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) → ( ( 𝑦 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) → ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) |
| 30 | 29 | reximdv2 | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) → ( ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) → ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) |
| 31 | 12 30 | mpd | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) |
| 32 | 31 | expr | ⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) |
| 34 | cnptop2 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) → 𝐾 ∈ Top ) | |
| 35 | 34 | adantl | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → 𝐾 ∈ Top ) |
| 36 | toptopon2 | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 37 | 35 36 | sylib | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 38 | isflf | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝐿 ∈ ( Fil ‘ ∪ 𝐽 ) ∧ 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ∪ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) | |
| 39 | 37 20 4 38 | syl3anc | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ∪ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) |
| 40 | 7 33 39 | mpbir2and | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐿 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐹 ) ) |