This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of Apostol p. 20. (Contributed by NM, 7-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpneg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∈ ℝ+ ↔ ¬ - 𝐴 ∈ ℝ+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 ) |
| 5 | 4 | olcd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ¬ - 𝐴 ∈ ℝ ∨ 0 ≤ 𝐴 ) ) |
| 6 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 7 | 6 | pm2.24d | ⊢ ( 𝐴 ∈ ℝ → ( ¬ - 𝐴 ∈ ℝ → 0 < 𝐴 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ¬ - 𝐴 ∈ ℝ → 0 < 𝐴 ) ) |
| 9 | ltlen | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 ≠ 0 ) ) ) | |
| 10 | 1 9 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 ≠ 0 ) ) ) |
| 11 | 10 | biimprd | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≠ 0 ) → 0 < 𝐴 ) ) |
| 12 | 11 | expcomd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≠ 0 → ( 0 ≤ 𝐴 → 0 < 𝐴 ) ) ) |
| 13 | 12 | imp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 ≤ 𝐴 → 0 < 𝐴 ) ) |
| 14 | 8 13 | jaod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( ¬ - 𝐴 ∈ ℝ ∨ 0 ≤ 𝐴 ) → 0 < 𝐴 ) ) |
| 15 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) | |
| 16 | 14 15 | jctild | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( ¬ - 𝐴 ∈ ℝ ∨ 0 ≤ 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) ) |
| 17 | 5 16 | impbid2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ↔ ( ¬ - 𝐴 ∈ ℝ ∨ 0 ≤ 𝐴 ) ) ) |
| 18 | lenlt | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ¬ 𝐴 < 0 ) ) | |
| 19 | 1 18 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ¬ 𝐴 < 0 ) ) |
| 20 | lt0neg1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) | |
| 21 | 20 | notbid | ⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 < 0 ↔ ¬ 0 < - 𝐴 ) ) |
| 22 | 19 21 | bitrd | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ¬ 0 < - 𝐴 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 ≤ 𝐴 ↔ ¬ 0 < - 𝐴 ) ) |
| 24 | 23 | orbi2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( ¬ - 𝐴 ∈ ℝ ∨ 0 ≤ 𝐴 ) ↔ ( ¬ - 𝐴 ∈ ℝ ∨ ¬ 0 < - 𝐴 ) ) ) |
| 25 | 17 24 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ↔ ( ¬ - 𝐴 ∈ ℝ ∨ ¬ 0 < - 𝐴 ) ) ) |
| 26 | ianor | ⊢ ( ¬ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ↔ ( ¬ - 𝐴 ∈ ℝ ∨ ¬ 0 < - 𝐴 ) ) | |
| 27 | 25 26 | bitr4di | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ↔ ¬ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) ) |
| 28 | elrp | ⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) | |
| 29 | elrp | ⊢ ( - 𝐴 ∈ ℝ+ ↔ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) | |
| 30 | 29 | notbii | ⊢ ( ¬ - 𝐴 ∈ ℝ+ ↔ ¬ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) |
| 31 | 27 28 30 | 3bitr4g | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∈ ℝ+ ↔ ¬ - 𝐴 ∈ ℝ+ ) ) |