This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptcom.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmptcom.4 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmptcom.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | ||
| Assertion | cnmptcom | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptcom.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmptcom.4 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmptcom.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | |
| 4 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 5 | 1 2 4 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 6 | cntop2 | ⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) → 𝐿 ∈ Top ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 8 | toptopon2 | ⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 10 | cnf2 | ⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) | |
| 11 | 5 9 3 10 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) |
| 12 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 13 | 12 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) |
| 14 | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 ↔ ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 ) | |
| 15 | 13 14 | bitr3i | ⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ↔ ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 ) |
| 16 | 11 15 | sylib | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 ) |
| 17 | eqid | ⊢ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 18 | 17 | fmpo | ⊢ ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 ↔ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) : ( 𝑌 × 𝑋 ) ⟶ ∪ 𝐿 ) |
| 19 | 16 18 | sylib | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) : ( 𝑌 × 𝑋 ) ⟶ ∪ 𝐿 ) |
| 20 | 19 | ffnd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) Fn ( 𝑌 × 𝑋 ) ) |
| 21 | fnov | ⊢ ( ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) Fn ( 𝑌 × 𝑋 ) ↔ ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑧 ∈ 𝑌 , 𝑤 ∈ 𝑋 ↦ ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) | |
| 22 | 20 21 | sylib | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑧 ∈ 𝑌 , 𝑤 ∈ 𝑋 ↦ ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) |
| 23 | nfcv | ⊢ Ⅎ 𝑦 𝑧 | |
| 24 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 25 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 26 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 27 | nfcv | ⊢ Ⅎ 𝑦 𝑥 | |
| 28 | nfmpo2 | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 29 | 27 28 23 | nfov | ⊢ Ⅎ 𝑦 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) |
| 30 | nfmpo1 | ⊢ Ⅎ 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 31 | 23 30 27 | nfov | ⊢ Ⅎ 𝑦 ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) |
| 32 | 29 31 | nfeq | ⊢ Ⅎ 𝑦 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) |
| 33 | 26 32 | nfim | ⊢ Ⅎ 𝑦 ( 𝜑 → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) |
| 34 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 35 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 36 | 25 35 24 | nfov | ⊢ Ⅎ 𝑥 ( 𝑤 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) |
| 37 | nfmpo2 | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 38 | 24 37 25 | nfov | ⊢ Ⅎ 𝑥 ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) |
| 39 | 36 38 | nfeq | ⊢ Ⅎ 𝑥 ( 𝑤 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) |
| 40 | 34 39 | nfim | ⊢ Ⅎ 𝑥 ( 𝜑 → ( 𝑤 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) |
| 41 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) ) | |
| 42 | oveq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) | |
| 43 | 41 42 | eqeq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ↔ ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ) |
| 44 | 43 | imbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ↔ ( 𝜑 → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ) ) |
| 45 | oveq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑤 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) ) | |
| 46 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) | |
| 47 | 45 46 | eqeq12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ↔ ( 𝑤 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) |
| 48 | 47 | imbi2d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝜑 → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ↔ ( 𝜑 → ( 𝑤 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) ) |
| 49 | rsp2 | ⊢ ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 → ( ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ∪ 𝐿 ) ) | |
| 50 | 49 16 | syl11 | ⊢ ( ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → ( 𝜑 → 𝐴 ∈ ∪ 𝐿 ) ) |
| 51 | 12 | ovmpt4g | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝐴 ∈ ∪ 𝐿 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = 𝐴 ) |
| 52 | 51 | 3com12 | ⊢ ( ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ 𝐿 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = 𝐴 ) |
| 53 | 17 | ovmpt4g | ⊢ ( ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ 𝐿 ) → ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) = 𝐴 ) |
| 54 | 52 53 | eqtr4d | ⊢ ( ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ 𝐿 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) |
| 55 | 54 | 3expia | ⊢ ( ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ∈ ∪ 𝐿 → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ) |
| 56 | 50 55 | syld | ⊢ ( ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) → ( 𝜑 → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = ( 𝑦 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑥 ) ) ) |
| 57 | 23 24 25 33 40 44 48 56 | vtocl2gaf | ⊢ ( ( 𝑧 ∈ 𝑌 ∧ 𝑤 ∈ 𝑋 ) → ( 𝜑 → ( 𝑤 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) |
| 58 | 57 | com12 | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑌 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) |
| 59 | 58 | 3impib | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑌 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) = ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) |
| 60 | 59 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑌 , 𝑤 ∈ 𝑋 ↦ ( 𝑤 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) ) = ( 𝑧 ∈ 𝑌 , 𝑤 ∈ 𝑋 ↦ ( 𝑧 ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) 𝑤 ) ) ) |
| 61 | 22 60 | eqtr4d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑧 ∈ 𝑌 , 𝑤 ∈ 𝑋 ↦ ( 𝑤 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) ) ) |
| 62 | 2 1 | cnmpt2nd | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑌 , 𝑤 ∈ 𝑋 ↦ 𝑤 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
| 63 | 2 1 | cnmpt1st | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑌 , 𝑤 ∈ 𝑋 ↦ 𝑧 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐾 ) ) |
| 64 | 2 1 62 63 3 | cnmpt22f | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑌 , 𝑤 ∈ 𝑋 ↦ ( 𝑤 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑧 ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐿 ) ) |
| 65 | 61 64 | eqeltrd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 , 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐿 ) ) |