This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . F is linear. (Contributed by NM, 17-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | ||
| cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | ||
| cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | ||
| cnlnadjlem.5 | ⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) | ||
| Assertion | cnlnadjlem6 | ⊢ 𝐹 ∈ LinOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | |
| 3 | cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | |
| 4 | cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | |
| 5 | cnlnadjlem.5 | ⊢ 𝐹 = ( 𝑦 ∈ ℋ ↦ 𝐵 ) | |
| 6 | 1 2 3 4 | cnlnadjlem3 | ⊢ ( 𝑦 ∈ ℋ → 𝐵 ∈ ℋ ) |
| 7 | 5 6 | fmpti | ⊢ 𝐹 : ℋ ⟶ ℋ |
| 8 | 1 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 9 | 8 | ffvelcdmi | ⊢ ( 𝑡 ∈ ℋ → ( 𝑇 ‘ 𝑡 ) ∈ ℋ ) |
| 10 | 9 | adantl | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑇 ‘ 𝑡 ) ∈ ℋ ) |
| 11 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑓 ) ∈ ℋ ) | |
| 12 | 11 | ad2antrr | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑓 ) ∈ ℋ ) |
| 13 | simplr | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → 𝑧 ∈ ℋ ) | |
| 14 | his7 | ⊢ ( ( ( 𝑇 ‘ 𝑡 ) ∈ ℋ ∧ ( 𝑥 ·ℎ 𝑓 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) + ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑧 ) ) ) | |
| 15 | 10 12 13 14 | syl3anc | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) + ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑧 ) ) ) |
| 16 | hvaddcl | ⊢ ( ( ( 𝑥 ·ℎ 𝑓 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ∈ ℋ ) | |
| 17 | 11 16 | sylan | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 18 | 1 2 3 4 5 | cnlnadjlem5 | ⊢ ( ( ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ∈ ℋ ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( 𝑡 ·ih ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ) ) |
| 19 | 17 18 | sylan | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( 𝑡 ·ih ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ) ) |
| 20 | simpll | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → 𝑥 ∈ ℂ ) | |
| 21 | 9 | adantl | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑇 ‘ 𝑡 ) ∈ ℋ ) |
| 22 | simplr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → 𝑓 ∈ ℋ ) | |
| 23 | his5 | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑡 ) ∈ ℋ ∧ 𝑓 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) = ( ( ∗ ‘ 𝑥 ) · ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑓 ) ) ) | |
| 24 | 20 21 22 23 | syl3anc | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) = ( ( ∗ ‘ 𝑥 ) · ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑓 ) ) ) |
| 25 | simpr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → 𝑡 ∈ ℋ ) | |
| 26 | 1 2 3 4 5 | cnlnadjlem4 | ⊢ ( 𝑓 ∈ ℋ → ( 𝐹 ‘ 𝑓 ) ∈ ℋ ) |
| 27 | 26 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝐹 ‘ 𝑓 ) ∈ ℋ ) |
| 28 | his5 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑡 ∈ ℋ ∧ ( 𝐹 ‘ 𝑓 ) ∈ ℋ ) → ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) = ( ( ∗ ‘ 𝑥 ) · ( 𝑡 ·ih ( 𝐹 ‘ 𝑓 ) ) ) ) | |
| 29 | 20 25 27 28 | syl3anc | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) = ( ( ∗ ‘ 𝑥 ) · ( 𝑡 ·ih ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 30 | 1 2 3 4 5 | cnlnadjlem5 | ⊢ ( ( 𝑓 ∈ ℋ ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑓 ) = ( 𝑡 ·ih ( 𝐹 ‘ 𝑓 ) ) ) |
| 31 | 30 | adantll | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑓 ) = ( 𝑡 ·ih ( 𝐹 ‘ 𝑓 ) ) ) |
| 32 | 31 | oveq2d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( ∗ ‘ 𝑥 ) · ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑓 ) ) = ( ( ∗ ‘ 𝑥 ) · ( 𝑡 ·ih ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 33 | 29 32 | eqtr4d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) = ( ( ∗ ‘ 𝑥 ) · ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑓 ) ) ) |
| 34 | 24 33 | eqtr4d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) = ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 35 | 34 | adantlr | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) = ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) ) |
| 36 | 1 2 3 4 5 | cnlnadjlem5 | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑧 ) = ( 𝑡 ·ih ( 𝐹 ‘ 𝑧 ) ) ) |
| 37 | 36 | adantll | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑧 ) = ( 𝑡 ·ih ( 𝐹 ‘ 𝑧 ) ) ) |
| 38 | 35 37 | oveq12d | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) + ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑧 ) ) = ( ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) + ( 𝑡 ·ih ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 39 | simpr | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → 𝑡 ∈ ℋ ) | |
| 40 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝐹 ‘ 𝑓 ) ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ∈ ℋ ) | |
| 41 | 26 40 | sylan2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ∈ ℋ ) |
| 42 | 41 | ad2antrr | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ∈ ℋ ) |
| 43 | 1 2 3 4 5 | cnlnadjlem4 | ⊢ ( 𝑧 ∈ ℋ → ( 𝐹 ‘ 𝑧 ) ∈ ℋ ) |
| 44 | 43 | ad2antlr | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℋ ) |
| 45 | his7 | ⊢ ( ( 𝑡 ∈ ℋ ∧ ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ∈ ℋ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℋ ) → ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) + ( 𝑡 ·ih ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 46 | 39 42 44 45 | syl3anc | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑡 ·ih ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ) + ( 𝑡 ·ih ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 47 | 38 46 | eqtr4d | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑡 ) ·ih ( 𝑥 ·ℎ 𝑓 ) ) + ( ( 𝑇 ‘ 𝑡 ) ·ih 𝑧 ) ) = ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 48 | 15 19 47 | 3eqtr3d | ⊢ ( ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑡 ∈ ℋ ) → ( 𝑡 ·ih ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ) = ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 49 | 48 | ralrimiva | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ∀ 𝑡 ∈ ℋ ( 𝑡 ·ih ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ) = ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 50 | 1 2 3 4 5 | cnlnadjlem4 | ⊢ ( ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ∈ ℋ → ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ∈ ℋ ) |
| 51 | 17 50 | syl | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ∈ ℋ ) |
| 52 | hvaddcl | ⊢ ( ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) ∈ ℋ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ∈ ℋ ) | |
| 53 | 41 43 52 | syl2an | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ∈ ℋ ) |
| 54 | hial2eq2 | ⊢ ( ( ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ∈ ℋ ∧ ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ∈ ℋ ) → ( ∀ 𝑡 ∈ ℋ ( 𝑡 ·ih ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ) = ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 55 | 51 53 54 | syl2anc | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ∀ 𝑡 ∈ ℋ ( 𝑡 ·ih ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) ) = ( 𝑡 ·ih ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 56 | 49 55 | mpbid | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) |
| 57 | 56 | ralrimiva | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ ) → ∀ 𝑧 ∈ ℋ ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) |
| 58 | 57 | rgen2 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑓 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) |
| 59 | ellnop | ⊢ ( 𝐹 ∈ LinOp ↔ ( 𝐹 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑓 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝐹 ‘ ( ( 𝑥 ·ℎ 𝑓 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝐹 ‘ 𝑓 ) ) +ℎ ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 60 | 7 58 59 | mpbir2an | ⊢ 𝐹 ∈ LinOp |