This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of complex numbers is a function. Alternate proof of cnfldfun not requiring that the index set of the components is ordered, but using quadratically many inequalities for the indices. (Contributed by AV, 14-Nov-2021) (Proof shortened by AV, 11-Nov-2024) Revise df-cnfld . (Revised by GG, 31-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldfunALT | ⊢ Fun ℂfld |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basendxnplusgndx | ⊢ ( Base ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 2 | basendxnmulrndx | ⊢ ( Base ‘ ndx ) ≠ ( .r ‘ ndx ) | |
| 3 | plusgndxnmulrndx | ⊢ ( +g ‘ ndx ) ≠ ( .r ‘ ndx ) | |
| 4 | fvex | ⊢ ( Base ‘ ndx ) ∈ V | |
| 5 | fvex | ⊢ ( +g ‘ ndx ) ∈ V | |
| 6 | fvex | ⊢ ( .r ‘ ndx ) ∈ V | |
| 7 | cnex | ⊢ ℂ ∈ V | |
| 8 | mpoaddex | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) ∈ V | |
| 9 | mpomulex | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ V | |
| 10 | 4 5 6 7 8 9 | funtp | ⊢ ( ( ( Base ‘ ndx ) ≠ ( +g ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( .r ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( .r ‘ ndx ) ) → Fun { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ) |
| 11 | 1 2 3 10 | mp3an | ⊢ Fun { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } |
| 12 | fvex | ⊢ ( *𝑟 ‘ ndx ) ∈ V | |
| 13 | cjf | ⊢ ∗ : ℂ ⟶ ℂ | |
| 14 | fex | ⊢ ( ( ∗ : ℂ ⟶ ℂ ∧ ℂ ∈ V ) → ∗ ∈ V ) | |
| 15 | 13 7 14 | mp2an | ⊢ ∗ ∈ V |
| 16 | 12 15 | funsn | ⊢ Fun { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } |
| 17 | 11 16 | pm3.2i | ⊢ ( Fun { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∧ Fun { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) |
| 18 | 7 8 9 | dmtpop | ⊢ dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } = { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } |
| 19 | 15 | dmsnop | ⊢ dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } = { ( *𝑟 ‘ ndx ) } |
| 20 | 18 19 | ineq12i | ⊢ ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) = ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( *𝑟 ‘ ndx ) } ) |
| 21 | starvndxnbasendx | ⊢ ( *𝑟 ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 22 | 21 | necomi | ⊢ ( Base ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) |
| 23 | starvndxnplusgndx | ⊢ ( *𝑟 ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 24 | 23 | necomi | ⊢ ( +g ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) |
| 25 | starvndxnmulrndx | ⊢ ( *𝑟 ‘ ndx ) ≠ ( .r ‘ ndx ) | |
| 26 | 25 | necomi | ⊢ ( .r ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) |
| 27 | disjtpsn | ⊢ ( ( ( Base ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ) → ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( *𝑟 ‘ ndx ) } ) = ∅ ) | |
| 28 | 22 24 26 27 | mp3an | ⊢ ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( *𝑟 ‘ ndx ) } ) = ∅ |
| 29 | 20 28 | eqtri | ⊢ ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) = ∅ |
| 30 | funun | ⊢ ( ( ( Fun { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∧ Fun { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∧ ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) = ∅ ) → Fun ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ) | |
| 31 | 17 29 30 | mp2an | ⊢ Fun ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) |
| 32 | slotsdifplendx | ⊢ ( ( *𝑟 ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( le ‘ ndx ) ) | |
| 33 | 32 | simpri | ⊢ ( TopSet ‘ ndx ) ≠ ( le ‘ ndx ) |
| 34 | dsndxntsetndx | ⊢ ( dist ‘ ndx ) ≠ ( TopSet ‘ ndx ) | |
| 35 | 34 | necomi | ⊢ ( TopSet ‘ ndx ) ≠ ( dist ‘ ndx ) |
| 36 | slotsdifdsndx | ⊢ ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( dist ‘ ndx ) ) | |
| 37 | 36 | simpri | ⊢ ( le ‘ ndx ) ≠ ( dist ‘ ndx ) |
| 38 | fvex | ⊢ ( TopSet ‘ ndx ) ∈ V | |
| 39 | fvex | ⊢ ( le ‘ ndx ) ∈ V | |
| 40 | fvex | ⊢ ( dist ‘ ndx ) ∈ V | |
| 41 | fvex | ⊢ ( MetOpen ‘ ( abs ∘ − ) ) ∈ V | |
| 42 | letsr | ⊢ ≤ ∈ TosetRel | |
| 43 | 42 | elexi | ⊢ ≤ ∈ V |
| 44 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 45 | fex | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ) → abs ∈ V ) | |
| 46 | 44 7 45 | mp2an | ⊢ abs ∈ V |
| 47 | subf | ⊢ − : ( ℂ × ℂ ) ⟶ ℂ | |
| 48 | 7 7 | xpex | ⊢ ( ℂ × ℂ ) ∈ V |
| 49 | fex | ⊢ ( ( − : ( ℂ × ℂ ) ⟶ ℂ ∧ ( ℂ × ℂ ) ∈ V ) → − ∈ V ) | |
| 50 | 47 48 49 | mp2an | ⊢ − ∈ V |
| 51 | 46 50 | coex | ⊢ ( abs ∘ − ) ∈ V |
| 52 | 38 39 40 41 43 51 | funtp | ⊢ ( ( ( TopSet ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( dist ‘ ndx ) ) → Fun { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ) |
| 53 | 33 35 37 52 | mp3an | ⊢ Fun { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } |
| 54 | fvex | ⊢ ( UnifSet ‘ ndx ) ∈ V | |
| 55 | fvex | ⊢ ( metUnif ‘ ( abs ∘ − ) ) ∈ V | |
| 56 | 54 55 | funsn | ⊢ Fun { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } |
| 57 | 53 56 | pm3.2i | ⊢ ( Fun { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∧ Fun { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) |
| 58 | 41 43 51 | dmtpop | ⊢ dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } = { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } |
| 59 | 55 | dmsnop | ⊢ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } = { ( UnifSet ‘ ndx ) } |
| 60 | 58 59 | ineq12i | ⊢ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∩ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) = ( { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) |
| 61 | slotsdifunifndx | ⊢ ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) | |
| 62 | unifndxntsetndx | ⊢ ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx ) | |
| 63 | 62 | necomi | ⊢ ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 64 | 63 | a1i | ⊢ ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) → ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) |
| 65 | 64 | anim1i | ⊢ ( ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) → ( ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) ) |
| 66 | 3anass | ⊢ ( ( ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ↔ ( ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) ) | |
| 67 | 65 66 | sylibr | ⊢ ( ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) → ( ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) |
| 68 | 61 67 | ax-mp | ⊢ ( ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) |
| 69 | disjtpsn | ⊢ ( ( ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) → ( { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) = ∅ ) | |
| 70 | 68 69 | ax-mp | ⊢ ( { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) = ∅ |
| 71 | 60 70 | eqtri | ⊢ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∩ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) = ∅ |
| 72 | funun | ⊢ ( ( ( Fun { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∧ Fun { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ∧ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∩ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) = ∅ ) → Fun ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) | |
| 73 | 57 71 72 | mp2an | ⊢ Fun ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) |
| 74 | 31 73 | pm3.2i | ⊢ ( Fun ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∧ Fun ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) |
| 75 | dmun | ⊢ dom ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) = ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) | |
| 76 | dmun | ⊢ dom ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) = ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) | |
| 77 | 75 76 | ineq12i | ⊢ ( dom ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∩ dom ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ( ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∩ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) |
| 78 | 18 58 | ineq12i | ⊢ ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ) = ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ) |
| 79 | tsetndxnbasendx | ⊢ ( TopSet ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 80 | 79 | necomi | ⊢ ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
| 81 | tsetndxnplusgndx | ⊢ ( TopSet ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 82 | 81 | necomi | ⊢ ( +g ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
| 83 | tsetndxnmulrndx | ⊢ ( TopSet ‘ ndx ) ≠ ( .r ‘ ndx ) | |
| 84 | 83 | necomi | ⊢ ( .r ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
| 85 | 80 82 84 | 3pm3.2i | ⊢ ( ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( TopSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( TopSet ‘ ndx ) ) |
| 86 | plendxnbasendx | ⊢ ( le ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 87 | 86 | necomi | ⊢ ( Base ‘ ndx ) ≠ ( le ‘ ndx ) |
| 88 | plendxnplusgndx | ⊢ ( le ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 89 | 88 | necomi | ⊢ ( +g ‘ ndx ) ≠ ( le ‘ ndx ) |
| 90 | plendxnmulrndx | ⊢ ( le ‘ ndx ) ≠ ( .r ‘ ndx ) | |
| 91 | 90 | necomi | ⊢ ( .r ‘ ndx ) ≠ ( le ‘ ndx ) |
| 92 | 87 89 91 | 3pm3.2i | ⊢ ( ( Base ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( le ‘ ndx ) ) |
| 93 | dsndxnbasendx | ⊢ ( dist ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 94 | 93 | necomi | ⊢ ( Base ‘ ndx ) ≠ ( dist ‘ ndx ) |
| 95 | dsndxnplusgndx | ⊢ ( dist ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 96 | 95 | necomi | ⊢ ( +g ‘ ndx ) ≠ ( dist ‘ ndx ) |
| 97 | dsndxnmulrndx | ⊢ ( dist ‘ ndx ) ≠ ( .r ‘ ndx ) | |
| 98 | 97 | necomi | ⊢ ( .r ‘ ndx ) ≠ ( dist ‘ ndx ) |
| 99 | 94 96 98 | 3pm3.2i | ⊢ ( ( Base ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( dist ‘ ndx ) ) |
| 100 | disjtp2 | ⊢ ( ( ( ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( TopSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( TopSet ‘ ndx ) ) ∧ ( ( Base ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( le ‘ ndx ) ) ∧ ( ( Base ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( dist ‘ ndx ) ) ) → ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ) = ∅ ) | |
| 101 | 85 92 99 100 | mp3an | ⊢ ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ) = ∅ |
| 102 | 78 101 | eqtri | ⊢ ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ) = ∅ |
| 103 | 18 59 | ineq12i | ⊢ ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) = ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) |
| 104 | unifndxnbasendx | ⊢ ( UnifSet ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 105 | 104 | necomi | ⊢ ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 106 | 105 | a1i | ⊢ ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) → ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) |
| 107 | 3simpa | ⊢ ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) → ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) | |
| 108 | 3anass | ⊢ ( ( ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ↔ ( ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) ) | |
| 109 | 106 107 108 | sylanbrc | ⊢ ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) → ( ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) |
| 110 | 109 | adantr | ⊢ ( ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) → ( ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) |
| 111 | 61 110 | ax-mp | ⊢ ( ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) |
| 112 | disjtpsn | ⊢ ( ( ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) → ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) = ∅ ) | |
| 113 | 111 112 | ax-mp | ⊢ ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) = ∅ |
| 114 | 103 113 | eqtri | ⊢ ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) = ∅ |
| 115 | 102 114 | pm3.2i | ⊢ ( ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ) = ∅ ∧ ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) = ∅ ) |
| 116 | undisj2 | ⊢ ( ( ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ) = ∅ ∧ ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) = ∅ ) ↔ ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ∅ ) | |
| 117 | 115 116 | mpbi | ⊢ ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ∅ |
| 118 | 19 58 | ineq12i | ⊢ ( dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ∩ dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ) = ( { ( *𝑟 ‘ ndx ) } ∩ { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ) |
| 119 | tsetndxnstarvndx | ⊢ ( TopSet ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) | |
| 120 | necom | ⊢ ( ( *𝑟 ‘ ndx ) ≠ ( le ‘ ndx ) ↔ ( le ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ) | |
| 121 | 120 | biimpi | ⊢ ( ( *𝑟 ‘ ndx ) ≠ ( le ‘ ndx ) → ( le ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ) |
| 122 | 121 | adantr | ⊢ ( ( ( *𝑟 ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( le ‘ ndx ) ) → ( le ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ) |
| 123 | 32 122 | ax-mp | ⊢ ( le ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) |
| 124 | necom | ⊢ ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) ↔ ( dist ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ) | |
| 125 | 124 | biimpi | ⊢ ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) → ( dist ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ) |
| 126 | 125 | adantr | ⊢ ( ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( dist ‘ ndx ) ) → ( dist ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ) |
| 127 | 36 126 | ax-mp | ⊢ ( dist ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) |
| 128 | disjtpsn | ⊢ ( ( ( TopSet ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ) → ( { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ∩ { ( *𝑟 ‘ ndx ) } ) = ∅ ) | |
| 129 | 119 123 127 128 | mp3an | ⊢ ( { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ∩ { ( *𝑟 ‘ ndx ) } ) = ∅ |
| 130 | 129 | ineqcomi | ⊢ ( { ( *𝑟 ‘ ndx ) } ∩ { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ) = ∅ |
| 131 | 118 130 | eqtri | ⊢ ( dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ∩ dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ) = ∅ |
| 132 | 19 59 | ineq12i | ⊢ ( dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ∩ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) = ( { ( *𝑟 ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) |
| 133 | simpl3 | ⊢ ( ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) → ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) | |
| 134 | 61 133 | ax-mp | ⊢ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 135 | disjsn2 | ⊢ ( ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) → ( { ( *𝑟 ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) = ∅ ) | |
| 136 | 134 135 | ax-mp | ⊢ ( { ( *𝑟 ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) = ∅ |
| 137 | 132 136 | eqtri | ⊢ ( dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ∩ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) = ∅ |
| 138 | 131 137 | pm3.2i | ⊢ ( ( dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ∩ dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ) = ∅ ∧ ( dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ∩ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) = ∅ ) |
| 139 | undisj2 | ⊢ ( ( ( dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ∩ dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ) = ∅ ∧ ( dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ∩ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) = ∅ ) ↔ ( dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ∩ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ∅ ) | |
| 140 | 138 139 | mpbi | ⊢ ( dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ∩ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ∅ |
| 141 | 117 140 | pm3.2i | ⊢ ( ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ∅ ∧ ( dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ∩ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ∅ ) |
| 142 | undisj1 | ⊢ ( ( ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∩ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ∅ ∧ ( dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ∩ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ∅ ) ↔ ( ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∩ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ∅ ) | |
| 143 | 141 142 | mpbi | ⊢ ( ( dom { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ dom { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∩ ( dom { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ dom { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ∅ |
| 144 | 77 143 | eqtri | ⊢ ( dom ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∩ dom ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ∅ |
| 145 | funun | ⊢ ( ( ( Fun ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∧ Fun ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) ∧ ( dom ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∩ dom ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) = ∅ ) → Fun ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) ) | |
| 146 | 74 144 145 | mp2an | ⊢ Fun ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) |
| 147 | df-cnfld | ⊢ ℂfld = ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) | |
| 148 | 147 | funeqi | ⊢ ( Fun ℂfld ↔ Fun ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) ) |
| 149 | 146 148 | mpbir | ⊢ Fun ℂfld |