This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjtpsn | ⊢ ( ( 𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∩ { 𝐷 } ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp | ⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) | |
| 2 | 1 | ineq1i | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } ∩ { 𝐷 } ) = ( ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ∩ { 𝐷 } ) |
| 3 | disjprsn | ⊢ ( ( 𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ) → ( { 𝐴 , 𝐵 } ∩ { 𝐷 } ) = ∅ ) | |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) → ( { 𝐴 , 𝐵 } ∩ { 𝐷 } ) = ∅ ) |
| 5 | disjsn2 | ⊢ ( 𝐶 ≠ 𝐷 → ( { 𝐶 } ∩ { 𝐷 } ) = ∅ ) | |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) → ( { 𝐶 } ∩ { 𝐷 } ) = ∅ ) |
| 7 | 4 6 | jca | ⊢ ( ( 𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) → ( ( { 𝐴 , 𝐵 } ∩ { 𝐷 } ) = ∅ ∧ ( { 𝐶 } ∩ { 𝐷 } ) = ∅ ) ) |
| 8 | undisj1 | ⊢ ( ( ( { 𝐴 , 𝐵 } ∩ { 𝐷 } ) = ∅ ∧ ( { 𝐶 } ∩ { 𝐷 } ) = ∅ ) ↔ ( ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ∩ { 𝐷 } ) = ∅ ) | |
| 9 | 7 8 | sylib | ⊢ ( ( 𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) → ( ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ∩ { 𝐷 } ) = ∅ ) |
| 10 | 2 9 | eqtrid | ⊢ ( ( 𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∩ { 𝐷 } ) = ∅ ) |